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Abstract— This paper introduces a methodology for designing
real-time controllers capable of enforcing desired trajectories
on microrobotic insects in vertical flight and hovering. The
main idea considered in this work is that altitude control can
be translated into a problem of lift force control. Through
analyses and experiments, we describe the proposed control
strategy, which is fundamentally adaptive with some elements
of model-based control. In order to test and explain the method
for controller synthesis and tuning, a static single-wing flapping
mechanism is employed in the collection of experimental data.
The empirical results validate the suitability of the chosen
approach.

I. I NTRODUCTION

In [1], the feasibility of flying robotic insects was empiri-
cally demonstrated. There, the lift-off of a 60-mg mechanical
fly shows that bio-inspired flapping-wing robots can generate
lift forces sufficiently large to overcome gravity. However,
to date, detailed control strategies addressing experimental
altitude control have not been reported. Here, we propose
a control scheme and a methodology for synthesizing con-
trollers for the tracking of specified trajectories along the
vertical axis. Evidence for the suitability of the considered
scheme is provided through experimental results, obtained
using the static single-wing flapping mechanism in [2].

The fundamental idea introduced in this work is that
enough information about the subsystems composing the
robotic insect can be gathereda priori, using well-known
identification methods, such that, during flight, only an
external position sensor is needed. The two main subsystems
relevant from a control perspective are the bimorph piezo-
electric actuator, used to transduce electrical into mechanical
power, and the mapping from the actuator tip displacement
to the lift force generated by the passive rotation of the wing,
as described in [2].

The dynamics of the system as a whole can be thought
of as a dynamic mapping, where the input is the exciting
voltage to the actuator and the output is the displacement of
the actuator’s tip. Note that this representation includesthe
dynamical interaction of the robot’s rigid airframe with all
the moving parts in the microrobot, which are the actuator,
the transmission mechanism, the wing-hinge and the wing
interacting with the air. Clearly, the dynamics of this system
are significantly different to the ones exhibit by a physi-
cally isolated actuator [3]. Also, note that the displacement-
force mapping is an abstract artifact used for design, being
physically a complex system composed of the mechanical
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transmission, the wing-hinge, and the wing interacting with
the air to produce lift.

Inspired by nature [4], but also for practical reasons,
roboticists have commonly designed flapping-wing mecha-
nisms to be excited by sinusoidal signals, mostly in open-
loop configurations (see [1] and references therein). Here,we
demonstrate the design and implementation of model-based
and model-free, in feedback and feedforward configurations,
of controllers for following sinusoidal reference signals.
The main idea is that, under actuator constrains, frequency,
amplitude and phase can be chosen and varied in order to
achieve specifications of lift and power. Considering this de-
sign choice, a natural control strategy is the implementation
of algorithms specialized in dealing with the tracking and
rejection of periodic signals. In this category, there are the
internal model principle(IMP) [5] based algorithms such as
those in [6], [7], [8], [9], [10] and other related articles,and
also theadaptive feedforward cancelation(AFC) algorithms
such as those in [11] and [12] and references therein.

As a first approach to the problem, in this work, we adopt a
control strategy based on a modified version of the discrete-
time ACF algorithm in [11]. Since the AFC algorithm is
a disturbance rejection scheme, here, the reference signals
to be followed are treated as disturbances to be rejected.
As in [11] and [12], the frequencies of the relevant signals
are known while the amplitudes and phases are assumed
unknown. The idea of treating the amplitudes and phases
of sinusoidal references as unknowns seems counterintuitive.
However, by the end of the paper, the reason for this
approach shall become clear.

The rest of the paper is organized as follows. Section II
explains the microrobotic flapping mechanism and the
experimental setup. Also, motivates the use this particular
system. Section III describes the empirical identification
of the system dynamics. Section IV discusses the control
strategies considered and the controller design method.
Section V presents experimental evidence on the suitability
of the proposed schemes. Finally, conclusions are given in
Section VI.

Notation.
• As usual,R and Z

+ denote the sets of real and non-
negative integer numbers, respectively.

• The variable t is used to index discrete time, i.e.,
t = {kTs}

∞
k=0, with k ∈ Z

+ and Ts ∈ R. As usual,Ts is
referred as the sampling-and-hold time. Depending on
the context we might indistinctly writex(t) or x(k).

• z−1 denotes the delay operator, i.e., for a signalx,
z−1x(k) = x(k− 1) and converselyzx(k) = x(k + 1).
Notice that since some of the systems involved in this
paper are time-varying, here,z is not necessarily the



complex variable associated to thez-transform.

II. M OTIVATION AND DESCRIPTION OF THE

EXPERIMENTAL SYSTEM

A. Motivation

An important intermediate objective in our research is
the altitude control of a microrobotic fly as the one in [1],
depicted in Fig. 1. A fundamental difficulty in achieving this
goal is that due to constraints of space and weight, in our
first conceptual design, no internal sensors are consideredto
be mounted in the microrobot. Instead, our conceptual design
relies on the off-line system identification of the subsystems
composing the robot, and also in some cases, on an external
remote position sensor.

It can be shown that the control objective in the previous
paragraph can be translated into one of lift force control, and
finally as shown in Section IV, reduced to an actuator output
control problem. A first thing to notice is that from Fig. 1,
the dynamical equation governing the movement of the fly
along the vertical axis is simply

fL −mg= mẍ, (1)

where m is the mass of the fly,g is the standard gravity
constant andfL is the instantaneous lift force generated
by the flapping of the wings. In some cases, an additional
dissipative body drag termcẋ could be added to the right side
of (1), wherec is a constant to be identified experimentally.

As described in [2], the lift forcefL depends in a nontrivial
way, through nonlinear relationships, on the frequency and
amplitude of the flapping angle. And, as also discussed
in [2], for sinusoidal inputs,fL forces typically oscillate
around some non-zero mean force crossing zero periodically.
Therefore, positive vertical motion occurs when in average
the lift force fL is larger that mg. When using digital
computers, for measuring and control,fL will be sampled at
a fixed sampling rate. Therefore, mathematically, the average
force can be approximated as

F(NL)
L (t) = F (NL)

L (kTs) = F (NL)
L (k) =

1
NL

NL−1

∑
i=0

fL(k− i), (2)

where, 0< NL ∈ Z
+. Often, the superscript(NL) will be

dropped and we will simply writeFL(t), if NL is obvious
from the context.

Thus, the key element in our control strategy is the
capability of forcing the average lift force signal in (2) to
follow a specified reference. In order to develop a general
methodology to be applied to any flapping-wing microrobot
of the kind depicted in Fig. 1, here, we propose and study
algorithms and techniques for identifying the plants of the
relevant subsystems and for tuning the necessary parameters
involved. This is done empirically, using a modified version
of the experimental setup in [2], which is discussed in the
next subsection.

B. Experimental Setup

We use the experimental setup in Fig. 2, which is a modi-
fied version of the the one in [2]. This setup was constructed
for the simultaneous measurement of lift forces generated
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Fig. 1. Illustration of typical Harvard microrobotic fly, similar to the one
in [1]. This particular design is described in [13] (drawingcourtesy of P. S.
Sreetharan).

A

anterior view

A
ventral view

capacitive sensor head

target plate

carbon fiber wing-driver frame

piezoelectric bimorph
bending actuator

Invar double-cantilever beam

wing-driver flapping
 
transmission

driving spar

wing hinge

wing

displacement sensor laser spot

laser
 
displacement
sensor 

laser
beam

Fig. 2. Diagram of experimental setup used for measuring instantaneous lift
forces and displacements of the actuator’s tip. The wing-driver is attached
to an Invar double-cantilever beam, whose deflection is measured by a
capacitive displacement sensor. This deflection is proportional to the lift
force, for small deformations of the beam. The displacementof the actuator’s
tip is measured using a CCD laser displacement sensor. For details on the
force sensor see [14].

by a flapping mechanism and identification of the resulting
system dynamics from the perspective of the mounted bi-
morph actuator, employed to drive the microrobotic system.
In Fig. 2, it can be observed that the wing driver mechanism
is mounted on the end of a double-cantilever beam, whose
deflection is measured with acapacitive displacement sensor
(CDS). From solid mechanics principles, for small beam de-
flections, there exists a linear relationship between deflection
and lift force.

The piezoelectric bimorph actuator, mounted in a carbon
fiber frame, used for flapping the wing is similar to the
one described in [15]. The linear displacement of the drive
actuator’s tip is mapped to an angular flapping motion
employing a transmission mechanism of the type described
in [1]. The resulting flapping angle is labeled byϕ in Fig. 2.
Notice that as explained in [2], flapping induces the flexure
of the wing-hinge, generating the passive rotation that in
turn produces lift. In order to minimize the effective mass
of the beam-driver system, the actuator is fabricated as light
as possible, thus maximizing the sensor bandwidth. Further
details on the design, fabrication and calibration of the CDS-
based force sensor are given in [2] and [14].

The other variable measured is the displacement of the
actuator’s tip. As shown in Fig. 2, this is done using
a non-contact CCD1 laser displacement sensor, which is

1Charge-coupled device.



located to a close distance from the actuator’s tip. In order
to determine the measurement, the sensor uses an optical
triangulation principle. Specifically, a semiconductor laser
beam is reflected off the target surface and passes through
a receiver lens system. Then, the beam is focused on a
CCD sensing array, which detects the peak value of the light
distribution of the beam spot. The CCD pixels within the area
of the beam spot are used to determine target position. As
the target displacement changes relative to the sensor head,
the reflected beam position changes on the CCD array. In
Fig. 2, the sensor laser reflection on the actuator is depicted
as a circular spot.

III. SYSTEM IDENTIFICATION FOR CONTROLLER DESIGN

A. Identification of the System Dynamics

The flapping mechanism described in Section II can be
seen, from the piezoelectric actuator perspective, as a system
in which the input is the voltage signal feeding the actuator
and the output is the displacement of the actuator’s tip
measured using the CCD laser displacement sensor. In this
approach the output disturbancev(t) represents the aggre-
gated effects of all the disturbances affecting the system,
including the unmodeled nonlinear aerodynamic forces pro-
duced by the wing flapping. With this idea in mind, as
depicted in Fig. 3, a discrete-time representation of the
system can be found usinglinear time-invariant(LTI) system
identification methods. Note that the dynamics of this system
are significantly different to the ones exhibit by a physically
isolated actuator [3]

Here, using the algorithm in [16], according to the imple-
mentation described in [17] and [18], the system in Fig. 3 is
identified, with the use of 200,000 samples generated using
a white-noise signal inputu(t), at a sampling-and-hold rate
of 10 KHz. It is important to mention that due to variability
in the micro-fabrication process, the models shown in this
article are used to illustrate the proposed identification and
control strategies, but they do not necessarily represent the
typical dynamics of flapping systems.

The identified dynamics ofP(z), labeled asP̂(z), are
shown in Fig. 4. There, the original 48th-order model is
shown along with reduced models with orders 12 and 4,
respectively. Notice that the identified systems have been
normalized so that the respective DC gain is 0 dB. The
natural frequency of̂P(z) is 118.36 Hz. As usual, in order to
reduce the system, a state-space realization of the identified
48th-order model is balanced [19], and then, a certain number
of states, relatively less observable and controllable than the
others, are discarded. For theoretical details see [19] and
[20]; for comments on an experimental implementation see
[17] and [18].

IV. CONTROL STRATEGIES

A. Displacement Control of the Actuator’s Tip

As explained in Section II, in order for a robotic insect to
accurately follow a desired trajectory, a reference of the aver-
age lift force,FL(t), must be followed. In the next subsection,
we show that an empirical relationship between average lift
force and amplitude of the actuator tip displacement, for a

P(z)- - h? -
u(t) y(t)

v(t)

+

Fig. 3. Idealized system dynamics.P(z): identified discrete-time open-loop
plant; u(t): input voltage signal to the actuator;y(t): output displacement of
actuator tip;v(t): output disturbance, representing the aggregated effectsof
all the disturbances affecting the system, including the unmodeled nonlinear
aerodynamic forces produced by the wing flapping.
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Fig. 4. Bode diagram of identified modelP̂(z) of the plantP(z). A 48th-
order model is shown in red, reduced 12th and 4th order modelsare shown
in green and blue, respectively.

fixed frequency, can be found. A way of thinking of this
relationship is as a lookup table, with which, for a given
frequency, a desired average lift force is mapped into a
desired amplitude to be followed by the actuator’s tip.

In order to implement a feedback control loop around
P(z), a measurement of the actuator’s tip displacement is
required. However, in that case, a plant model is not strictly
necessary for implementing the controller in real-time. On
the other hand, employing the identified plantP̂(z) in Fig. 4,
a model-based feedforward strategy can be pursued. A
feedback control strategy is convenient in cases in which
precision and accuracy are required. For example, when
performing experiments in which relationships between ac-
tuator displacement and average lift force are estimated.
A model-based feedforward strategy will be essential for
the implementation of real-time controllers on systems in
which the use of displacement sensors is infeasible with the
available technology. For example, it is unrealistic to think
that a reliable displacement sensor could be mounted in a
flying microrobotic insect.

For reasons already commented, in both feedback and
model-based feedforward configurations, the desired outputs
from the systemP(z) have the form

yd(k) = a(k)sin

(

2πk
N

)

+b(k)cos

(

2πk
N

)

, (3)

whereN is the number of samples per cycle, anda(k) and
b(k) are considered to be unknown functions of time. The



frequency is considered known. It is somehow counterintu-
itive to think of a reference as a partially unknown signal.
However, this approach is convenient because in the lift force
control experiments, the actuator displacement referenceis
generated in real-time according to a lookup table to be
discussed in the next subsection, and therefore, unknown
a priori. As discussed in the Introduction, here we use a
slightly modified version of the discrete-time AFC algorithm
in [11], which is an Euler method-based approximation of
the continuous-time AFC algorithm studied in [21]. The
proposed control scheme is shown in Fig. 5. For purposes
of analysis, let us for now assume thatv(k) = 0, ∀ k. Then,
the main idea behind the algorithm is that if the signal

r(k) = −yd(k) (4)

is rejected effectively, it follows that the error

e(k) = y(k)+ r(k) = [Pu](k)+ r(k) (5)

is minimized. Consequently, if the errore(k) in (5) is mini-
mized, the system outputy(k) closely follows the reference
yd(k).

Ideally, for a stable minimum phase plantP, in order to
cancelr(k), the control signal should beu(k) =−

[

P−1r̂
]

(k),
where ˆr(k) is an estimate ofr(k). However, most systems are
non-minimum phase, in which instances, the best minimum
phase approximation ofP(z), P̄(z), should be used. In
that case,P̄−1 would produced an unwanted effect on the
magnitude and phase of ˆr(k). Fortunate, since the magnitude
and phase of the periodic signalr(k) are being estimated
adaptively, the system inverse can be ignored and the new
control signal simply becomes

u(k) = −

[

α̂(k)sin

(

2πk
N

)

+ β̂(k)cos

(

2πk
N

)]

, (6)

with the adaptive law

α̂(k) = α̂(k−1)+ γe(k−1)sin

(

2πk
N

+ φ
)

, (7)

β̂ (k) = β̂ (k−1)+ γe(k−1)cos

(

2πk
N

+ φ
)

, (8)

wherey(k) is the measured actuator’s tip displacement, and
according to (5),e(k−1)= y(k−1)+ r(k−1). The symbolγ
represents an adaptation gain, chosen by simulation, usinga
computer model of the system depicted in Fig. 5. The phase
parameterφ is also chosen by simulation.

In this article, we introduce the notion that the reference
signalr(k) in Fig. 5 can be seen as an output disturbance, and
therefore, that the reference-following problem considered
here is very similar to the disturbance rejection case in [12].
Note that sinceu(k) is filtered troughP(z), α̂(k) andβ̂ (k) are
not estimates ofa(k) andb(k), respectively. Nonetheless, as
explained in [12], the ideas on stability and convergence, for
the input disturbance case, discussed in [11] and references
therein, apply to this case.

Later in this section, we will show that a significant part
of the frequency content of the disturbances affecting the
microrobotic flapping-wing system, for a sinusoidalr(k),
modeled as the output disturbancev(t), is the result of

Adaptive
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Fig. 5. AFC scheme for rejectingr(k) and trackingyd(t).

harmonics of the fundamental frequencyfr , where fr is the
frequency of the periodic signalr(t)= r(kTs)= r(k) in Fig. 5.
This nonlinear effect can be modeled by connecting a linear
model and a polynomial mapping in a so-called Volterra
configuration. However, a compelling physical explanation
behind this phenomenon is still lacking and these issues
remain a matters of further research. Nonetheless, it is impor-
tant to mention that the appearance of harmonics in natural
insects has been reported [4], which suggests that there might
be a fluid mechanics explanation of the phenomenon.

Disturbance profiles of this kind are reminiscent of the
repeatable runout described in thehard disk drive(HDD)
literature (see [11], [12], [10] and references therein). Thus,
it is possible that the reasons for the appearance of harmonic
disturbances in this case are similar to ones in the HDD case.
Though the causes of this phenomenon are relevant to the
physics of the particular system, they are not necessary for
the implementation of a scheme capable of rejecting them.
Thus, let us assume that

d(k) = r(k)+v(k)

=
n

∑
i=1

[

ai(k)sin

(

2π ik
N

)

+bi(k)cos

(

2π ik
N

)]

, (9)

where i is the index for the corresponding harmonic,N
is the number of samples per cycle, and the reference
signal is relabeled asr(k) = a1(k)sin

(

2πk
N

)

+b1(k)cos
(

2πk
N

)

.
Obviously, the other components ofd(k) in (9) are assumed
to be partv(k).

Everything argued in the previous paragraphs, for the case
d(k) = r(k), is fundamentally valid for the case in which
d(k) = r(k)+v(k) with the form in (9). Thus, as in [12], a
canceling control signal for the case in (9) is

u(k) = −
n

∑
i=1

[

α̂i(k)sin

(

2π ik
N

)

+ β̂i(k)cos

(

2π ik
N

)]

. (10)



The update equations for the estimated parameters become

α̂i(k) = α̂i(k−1)+ γie(k−1)sin

(

2π ik
N

+ φi

)

, (11)

β̂i(k) = β̂i(k−1)+ γie(k−1)cos

(

2π ik
N

+ φi

)

, (12)

where theγi are adaptation gains, chosen differently for each
harmonic. A phase advance modification can be added to
reduce the sensitivity and allow for more harmonics to be
canceled as was done previously in [11] and [12], if nec-
essary. Sometimes it is convenient to chooseφi = ∠P(ejθi ),

with θi = 2π i
(

fr
fs

)

, where fr and fs are the frequency ofr(t)
and the sampling frequency of the system, respectively. As
in the case whered(k) = r(k), in this case,α̂i(k) and β̂i(k)
are not estimates ofai(k) andbi(k), respectively.

Following the method in [11], and as done in [12], the
adaptive feedforward disturbance rejection scheme in Fig.5
can be transformed into an LTI equivalent representation.
By treating the rejection scheme as an LTI system, the
sensitivity function fromd(k) to e(k) can be computed,
allowing a performance evaluation of the whole system.
Here, this analysis is omitted because it can be easily done
following the example in [12].

Due to limitations of space and weight, it is currently
unreasonable to design a flying microrobot under the assump-
tion that internal sensors can be mounted into the device.
Therefore, here we explore the feasibility of implementing
the scheme considered in Fig. 5 after replacing sensors by
identified models, as shown in Fig. 6. There, the control
signal u(k) is used as input to the system plant,P(z), and
also to an identified model of it,̂P(z). Instead of using the
measured signaly(k) to update the gainŝα(k) and β̂ (k), an
estimate ofy(k), ŷ(k), is used for that purpose.

In order to demonstrate the suitability of the proposed
methods, here we show four experimental cases, in Figs. 7,
8, 9 and 10, respectively. The first case is shown for purposes
of analysis and comparison, in which no control is applied
to the system. Here, the system is excited in open loop
by a sinusoidal signalu(t) = yd(t) = Ar sin(2π frt) with
normalized amplitudeAr = 1 and frequencyfr = 105 Hz. The
normalization is such that a constant inputu(t) = 1 generates
an output equal to 1.

Three things should be noticed in Fig. 7. The first is that
the system can be approximated by the use of a linear model.
This is clear from the fact that thepower spectral density
(PSD) estimate of the outputy(t) shows that most of the
signal power is concentrated at the fundamental frequency
of 105 Hz. The second is that, as expected, the phase and
magnitude of the output are changed with respect to the
input. The third is that a pattern of harmonics appears in
the output signal’s PSD. As explained before, the physics of
the underlying phenomenon is not completely understood.
However, we have already explained that these harmonics
can be treated as output disturbances affecting the system.

Cases 2 and 3 are shown in Figs. 8 and 9, respectively.
In these cases,yd(t) = Ar sin(2π frt) andr(t) = −yd(t), with
Ar = 1 and fr = 105 Hz. Case 2 is the implementation of
the adaptive scheme in Fig. 5, with the adaptive law in

TABLE I

RMS VALUE OF THE CONTROL ERROR SIGNALe(k), FOR FOUR

EXPERIMENTAL CASES

Case 1 2 3 4

RMS value 1.2107 0.1417 0.0867 0.1735
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Fig. 6. Model-based AFC scheme for rejectingr(k) and trackingyd(t).

(6), (7) and (8). Clearly, the control strategy is capable of
correcting for the phase shift and magnitude amplification,
but as expected, the harmonics remain essentially the same
of Case 1. Case 3 is the implementation of the adaptive
scheme with the adaptive law in (10), (11) and (12), which
from this point onwards is referred asharmonics rejection
scheme(HRS). Unequivocally, the control method is capable
of correcting for the phase shift, the magnitude amplification,
and also to reject the first three harmonics, targeted in this
experiment. This is evidenced by the bottom plot of Fig. 9,
which compares the PSD estimates of the measured outputs
y(t), with and without using the HRS.

Finally, Case 4 is shown in Fig. 10. This is the implemen-
tation of the model-based AFC scheme in Fig. 6, with the
same desired outputyd(t) of Case 2. Due to discrepancies
between the model̂P(z) and the physical systemP(z), the
performance is degraded respect to the ones obtained using
the scheme in Fig. 5 and the HRS. However, this degradation
is not significant in the context of this research. The control
errors are summarized in Table I.

B. Empirical Relationship Between Actuator Tip’s Displace-
ment and Lift Force

The considered control strategy relies on rejecting the
signalr(k) by the use of the fully adaptive scheme in Fig. 5
or the model-based adaptive scheme in Fig. 6. In order
to generate a signalr(t) = −yd(t) = −Ar sin(2π frt) with
the appropriate phase and amplitude required for generating
a desired average lift force profile, in this subsection we
present an experimental method for finding a lookup table
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in open loop, withAr = 1 and fr = 105 Hz.Bottom Plot:PSD estimate of
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that maps the amplitude of the output signaly(t) to the
average lift forceFL(t), for fixed frequencies.

Arbitrarily, we pick five fixed values for the frequency
fr , 105, 120, 135, 150 and 180 Hz, and within these
drive frequencies, the amplitude ofr(t) is varied. Using
the fully adaptive scheme in Fig. 5, we ensure that the
actual outputy(t) rejects and follows the chosenr(t) and
yd(t), respectively. Then, using the force sensor described in
Section II, for a fixed frequency and a given amplitude, the
average lift force is measured. For example, Fig. 11 shows
the instantaneous and average forces whenfr = 105 Hz,
the amplitude ofyd(t) is equal to 1.2 and NL = 1,000.
Repeating the experiment for different amplitudes, a mapping
describing the amplitude-force relationship can be found.
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Fig. 9. Case 3.Upper Plot: Time series ofyd(t) = Ar sin(2π fr t) andy(t),
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of PSD estimates of the measured outputsy(t), with and without using the
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Fig. 10. Case 4.Upper Plot: Time series ofyd(t) = Ar sin(2π fr t) and
y(t), using the model-based adaptive scheme in Fig. 6, withAr = 1 and
fr = 105 Hz.Bottom Plot:PSD estimate of the measured outputy(t).

Thus, for fr = 105 Hz, in Fig. 12 each symbol⋆ represents
an experiment in which 200,000 data points were collected.
Here, it can be observed that the average lift force varies
roughy in a linear manner on the signalr(t) amplitude. Then,
using the least-squares method, a line is fitted to the data.
This is shown as a dashed red line.

Besides its rough linearity, another remarkable feature of
the relationship between average lift force and the amplitude
of r(t) is that the rightmost⋆ marks the maximum actuator
displacement amplitude achievable at the frequencyfr =
105 Hz. The hard physical constraint is the amplitude of the
control signalu(t) that feeds the amplifier connecting the
digital controller to the bimorph piezo actuator. This signal



TABLE II

RMS VALUE OF CONTROL SIGNALu(k), REQUIRED FOR GENERATING

35 mgOF LIFT FORCE

fr 105 Hz 120 Hz 135 Hz 150 Hz 180 Hz

RMS value Infeasible 0.9340 0.8606 0.7521 0.9408

cannot exceed 1 V, because it is amplified by a factor of
100 and biased by 100 V before being fed to the actuator,
which by design does not tolerate voltages larger than 200 V.
The maximum feasible amplitude ofyd(t) depends on the
frequencyfr , and can be easily estimated by looking at the
Bode plot of the identified plant̂P(z) in Fig. 3. For further
details on the actuator’s physics see [15].

The same experiment was repeated withfr taking the
values 120, 135, 150 and 180 Hz. The corresponding data
points and fitted lines are shown in Fig. 12. Here, a couple of
interesting things could be observed. The first is that around
the natural frequency of the systemP(z), increasing the
frequencyfr , increases the magnitude of the lift force. This
is consistent with the idea that for certain frequency ranges,
the passive rotation of the wing around the wing hinge
is increased, producing stronger lift forces. As discussed
in [2], and mentioned earlier in this article, the dynamics
describing the relationship between flapping signals and lift
forces are highly nonlinear. Therefore, the data shown here
are for illustrating the proposed control scheme, and not for
explaining a physical phenomenon, since these results are
contingent to this particular experimental case.

With the previous comments in mind, a second thing to
notice is that it is not necessarily the best control strategy
to choose fr equal to the natural frequency ofP(z). For
example, among the options in Fig. 12, the best choice is
fr = 150 Hz. To explain this consider the hypothetical case
of a 70-mg fly, in which each wing should produce more than
35 mg of average lift force to cause a vertical ascent of the
microrobot. Clearly, more than 35 mg can be generated with
amplitude 1 andfr = 180 Hz, amplitude 1.1 and fr = 150 Hz,
amplitude 1.4 and fr = 135 Hz, and amplitude 1.6 and
fr = 120 Hz. Notice that it is unfeasible to generate a force
larger than 35 mg withfr = 105 Hz. Therefore, the obvious
choice is fr = 150 Hz, because it is not only possible to
generate a lift force larger than 35 mg, but also because the
maximum achievable force exceeds 50 mg, allowing a greater
maneuverability. The RMS values of the required control
signals for producing 35 mg are summarized in Table II.
Notice that the required signal with smallest RMS value
corresponds to the casefr = 150 Hz.

The purpose of finding an empirical relationship between
the actuator tip displacement and the generated average lift
force is schematized in Fig. 13. Here,x(t) is the altitude
of a fly as modeled in Subsection II.A, measured using an
external sensor or camera andxd(t) is the desired vertical
trajectory. Usingxd(t) or ex(t) = xd(t)− x(t) and an upper
level control law, a desired average lift forceFL(t) can be
generated. Then, using a lookup table, obtained empirically
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Fig. 13. Depiction of an upper level altitude control strategy.

as was done in Fig. 12,FL(t) is mapped to a desired reference
r(t) to be used in the scheme in Fig. 6. An experimental
example is described in the next section.

V. EXPERIMENTAL L IFT FORCE CONTROL EXAMPLE

In this section, we present an experimental example of
altitude control. Since the main idea is to demonstrate lift
control using the adaptive scheme in Fig. 6, we employ
a simple open-loop upper level control law. The objective
is to follow an average lift force signal,FL(t), such that
a 70-mg robotic fly would move from 0 to 0.3 m and
then return to 0 m in no more than 3 s. Using the model
in Subsection II.A and the experimental data obtained for
plotting Fig. 12, through computer simulation the complying
a priori trajectory in Fig. 14 was found. Also according to the
simulation, thea priori trajectory in Fig. 14 is achievable by
tracking the desired lift force signal in red in Fig. 15, where
NL = 1,000.

The resulting experimental average lift force is plot-
ted in blue in Fig. 15, which using the control strat-
egy in Section IV, results from choosingr(t) = −yd(t) =



0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

Time (sec)

P
os

iti
on

 x
(t

) 
(m

)
Estimated Complying Trajectory x(t)

 

 
A Priori
A Posteriori
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Fig. 16. Comparison of time seriesyd(t) and y(t) generating the average
lift force in Fig. 15.Left Plot: Complete series.Right Plot: Transition from
Ar = 1.2 to Ar = 0.95.

−Ar sin(2π150t), with Ar = 1.2 for t ∈ [0,0.347) s andAr =
0.95 for t ∈ [0.347,5] s. The time series of the experimental
reference,yd(t), and output,y(t), are shown in Fig. 16.
Here, on the left the complete signals are compared, and
on the right the transition fromAr = 1.2 to Ar = 0.95 is
shown. Notice thaty(t) is capable of followingyd(t) and
that the transition is smooth, becauseP(z) is under the
control of the feedforward scheme in Fig. 6. According to
the simulations, the estimated resultinga posterioritrajectory
is shown in blue in Fig. 14, which indicates that more
elaborated upper level control laws are required for achieving
complex trajectories.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented an investigation on the issue
of enforcing desired trajectories on microrobotic insectsin
vertical flight and hovering. We argued using analyses and
experimental data that the original problem can be converted
into one of average force lift control, and finally, into one
of displacement tracking of the bimorph actuator’s tip. In

order to test the concepts introduced here, we used a single-
wing static flapping mechanism. In the future, we will further
investigate several issues that remain open, among others,
the design of upper-level control strategies, the nonlinear
modeling of the mapping from actuator’s tip displacement to
lift force, and the experimental implementation of the control
strategy into a two-wing fly in vertical motion and hovering.
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