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Abstract
Traditional micro air vehicles (MAVs) are miniature versions of full-scale aircraft from which
their design principles closely follow. The first step in aircraft design is the development of a
conceptual design, where basic specifications and vehicle size are established. Conceptual
design methods do not rely on specific knowledge of the propulsion system, vehicle layout and
subsystems; these details are addressed later in the design process. Non-traditional MAV
designs based on birds or insects are less common and without well-established conceptual
design methods. This paper presents a conceptual design process for hovering flapping-wing
vehicles. An energy-based accounting of propulsion and aerodynamics is combined with a one
degree-of-freedom dynamic flapping model. Important results include simple analytical
expressions for flight endurance and range, predictions for maximum feasible wing size and
body mass, and critical design space restrictions resulting from finite wing inertia. A new
figure-of-merit for wing structural-inertial efficiency is proposed and used to quantify the
performance of real and artificial insect wings. The impact of these results on future
flapping-wing MAV designs is discussed in detail.

1. Introduction

Advances in the understanding of insect flight and flapping-
wing aerodynamics have prompted several efforts to
develop insect-scale flight vehicles. Efforts to date are
primarily concerned with the feasibility of these devices,
rather than the optimization of their performance or the
establishment of general design principles. Investigations
have focused on maximizing thrust-to-weight or minimizing
power consumption. Work in the design and optimization
of individual vehicle subsystems include efforts to optimize
stroke kinematics, wing shape and compliance, transmission
efficiency and actuator performance. As a result of these
efforts and as evidenced by recent successful prototypes
[1–5], development of practical insect-scale flight vehicles is
imminent.

As the required technologies mature, there is an
increasing need to establish system-level design principles.
The design space for these vehicles is very large, and the
relationships between design parameters and performance
can be complex and counter-intuitive—does minimizing wing
loading maximize flight endurance? What impact will the

wing size have on the achievable resonant frequency? Is there
an optimal flapping frequency? Do larger or smaller vehicles
have longer range? Will an optimal design have a large battery
mass fraction? Once the feasibility of achieving hover has been
addressed, these and many other design questions rise to our
attention.

Fixed-wing and rotary-wing aircraft have almost a century
of development behind them. Standardized design principles
have been developed for every stage of the design cycle,
beginning with the conceptual design phase: here, gross
vehicle parameters are determined, including estimates of
vehicle mass, wing/rotor size, propulsion requirements and
estimates of the mass fractions of each subsystem. An early
step in the conceptual design of a fixed-wing aircraft is
called vehicle sizing [6]. In this process, vehicle performance
requirements are plotted against potential choices for thrust-
to-weight ratio (T/W) and wing loading (W/S). The minimum
weight vehicle that meets all performance requirements is
selected. Variations of this method consider fixed propulsion
systems or ‘rubber engine’ models that scale with vehicle
size. Similar methods exist for helicopter design: rotor tip
speed is usually chosen by constraints on rotor stall and
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Figure 1. (A) Canonical flapping configuration consistent with our
model: a single linear actuator drives both wings symmetrically
through an (assumed) linear transmission, as viewed normal to the
stroke plane. (B) Equivalent LP linear model used in our analysis.

flow compression speeds, autogyration requirements and rotor
noise limits [7]. The main rotor is then sized to balance induced
and viscous drag losses. In both fixed and rotary vehicle
designs, accumulated knowledge of past performance informs
the designer ‘what works’.

This paper reports our efforts to develop a conceptual
design process for flapping-wing vehicles, with a primary
focus on hovering flight. Our methods make several
simplifying assumptions, but these assumptions are chosen
carefully to preserve underlying performance trends. After
developing a dynamic model of flapping, actuator and battery
mass fractions are determined by energy methods. These sizing
methods and the flapping model, combined with derived limits
on wing structural-inertial efficiency, determine the range of
feasible designs and vehicle performance limits.

2. System dynamics

We will model the actuator-transmission-wing system of a
flapping vehicle with an equivalent one degree-of-freedom
(DOF) lumped-parameter (LP) linear model, characterized by
effective mass, stiffness and damping coefficients. We seek
analytical expressions associating these coefficients with a
set of independent parameters describing the properties and
performance of the actuator, transmission and wings. Figure 1
shows a simplified flapping configuration with a single power
actuator driving two wings, and the equivalent translational
LP model. We assume that the wings flap symmetrically
in a horizontal stroke plane, with peak-to-peak flapping
amplitude �. The wings are coupled to the drive actuator
through a linear, lossless transmission with transmission
ratio T , where the time-varying flapping angle φ(t) and
actuator displacement x(t) are related by φ = T x.
The drive actuator is modeled as an idealized force
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Figure 2. Wings are assumed to flap symmetrically in a horizontal
stroke plane, as shown in (A). Conventions for flapping angle φ and
angle-of-attack α are shown. The wing shape is parametrized
according to (B).

source, characterized by its blocked force Fb and ‘static’
or ‘free’ deflection δst . These values should be taken
from operating conditions if dc measurements degrade at
high frequencies. The effective mass m is the sum of
the actuator effective mass ma,eff and the effective mass of
the wings 2IwT 2, where Iw is the mass moment of inertia of a
single wing.

With the effective mass m and stiffness k = Fb/δst in hand,
we only need the damping coefficient b to complete our LP
model. Damping results from aerodynamic drag, labeled FD

in figure 1, acting through the aerodynamic center of pressure
at the radial position rcp. To estimate drag, we apply a method
of scaling experimental data which borrows elements from the
classic blade-element theory of propellers [8]. Our methods are
in line with established techniques [9, 10] used in the study of
insect aerodynamics.

The blade-element method begins with the assumption
that aerodynamic forces are proportional to the local dynamic
pressure. The wing flaps about its base, and we form chordwise
strips as shown in figure 2(B); each has an instantaneous local
velocity φ̇r. The force (lift or drag) developed on each strip is

dFaero = 1
2ρφ̇2r2︸ ︷︷ ︸

pdyn

CF(α)︸ ︷︷ ︸
CF

c(r)dr︸ ︷︷ ︸
dS

, (1)

where ρ is the air density, CF is the force coefficient (a function
of angle-of-attack α), and r and c are the radial position and
chord, as shown in figure 2. We do not account for local
variation of α resulting from induced flow—as commonly
done in helicopter or propeller analysis—due to the irregular
and highly three-dimensional nature of insect-wing flows.

2



Bioinspir. Biomim. 7 (2012) 036001 J P Whitney and R J Wood

A simple radial integration leads to an expression for the
instantaneous lift

FL = 1

2
ρφ̇2CL(α)c̄R3

∫ 1

0

(
r̂
)2

ĉ(r̂) dr̂︸ ︷︷ ︸
≡ r̂2

2

, (2)

where r̂ = r/R and c̄ = Aw/R. Parameters R, Aw and c̄ are
the wing radius, area and mean chord. We define the wing
aspect ratio1 = R/c̄. The parameter r̂2 is the second wing
shape moment as defined by Ellington [11]. We call the net
vertical aerodynamic force ‘lift’—sometimes called ‘thrust’.
This equation also gives the instantaneous drag force by simply
replacing CL(α) with CD(α). Lift and drag coefficients exhibit
an experimentally determined variation with angle-of-attack

CL(α) = CLmax sin (2α) ,

CD(α) =
(

CDmax + CD0

2

)
−

(
CDmax − CD0

2

)
cos (2α) . (3)

The constant coefficients are determined by experiment. The
original coefficients measured by Dickinson in the classic
‘robofly’ experiment [9] are CLmax = 1.8, CD0 = 0.4 and
CDmax = 3.4, measured at a Reynolds number (Re) near 200.
Subsequent testing found little variation up to Re = 10 000
[10].

The damping force seen by the actuator during symmetric
flapping is twice the drag of one wing, reflected through the
transmission

Fdamp = 2FDr̂cpRT, (4)

where r̂cp is the non-dimensional radial position of the center
of pressure (r̂cp = rcp/R). For a linear model, the damping
force must be proportional to φ̇, but we see in (2) that there
is a φ̇2 dependence. We replace the quadratic term φ̇2 with
φ̇0φ̇, where φ̇0 is the angular velocity at mid-stroke (φ = 0).
This ‘secant’ approximation is a standard way to cope with a
quadratic damping term [12].

Sinusoidal excitation, Fb cos(ωt), results in a
displacement X cos(ωt − φp), where X is the amplitude
of linear translation, with phase φp. Using φ̇ = T ẋ and
φ̇0 = ωXT we find that Fdamp = ωXcẋ and b = ωXc, where

c = T 3ρC̃D
R5

r̂2
2 r̂cp. (5)

Note that the damping coefficient b is a parametric function
of the solution amplitude and frequency. Since it does not
depend on x—only the parameters X and ω—the LP model is
still linear. Parametric dependence of b ensures that the correct
value of φ̇0 is used in the approximation for different flapping
amplitudes and frequencies.

Since c must be constant, CD(α) has been replaced with
C̃D ≡ CD(α0), where α0 is the angle-of-attack at midstroke.
Since CD is fixed to the midstroke value, we expect errors in
Fdamp away from φ = 0. In figure 3, the actual drag, computed
using (4) for sinusoidal flapping and rotation, is compared
against the secant approximation (dashed) for a range of values
of α0. Note how the faults of fixed CD are offset by our previous
fault in assuming φ̇2 → φ̇0φ̇, particularly for α0 = 35◦ and

1 Be careful; some authors define aspect ratio as = 2R/c̄.
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Figure 3. Our conceptual design model assumes sinusoidal flapping
and symmetric sinusoidal wing pitching. One-half of a flapping
period is plotted, with � = 115◦ and α0 = 45◦. In the lower plot,
damping force (arbitrary units) due to drag (solid) is compared with
the linear damping force (dashed) obtained with the secant
approximation (φ̇2 → φ̇0φ̇ and CD(α) → CD(α0)).

α0 = 45◦. Away from midstroke we underestimate α (drag
prediction low) and overestimate φ̇2 (drag prediction high). For
high wing pitching (small α0), a significant underprediction
of drag levels occurs away from φ = 0. With less pitching
(α0 large), the velocity error dominates, and drag is over-
predicted.

We now have analytical expressions for all the coefficients
in our LP model:

mẍ + ωXc︸︷︷︸
‘b’

ẋ + kx = Fb cos(ωt). (6)

The solution is computed using the usual methods, giving

X̂ = q2

r2

⎡⎣− (1 − r2)2

2
+

√
(1 − r2)4

4
+ r4

q4

⎤⎦1/2

, (7)

where X̂ is X/δst and r = ω/ωn, with ωn = √
k/m the natural

frequency. The constant q is defined to be

q =
√

mk

cFb
=

√
m

cδst
. (8)

We assume hereafter that flapping in hover is designed to occur
at the natural frequency ωn, unburdening the actuator from the
task of storing and returning negative power. At r = 1, X̂ = q;
thus, q is, by one common definition, the quality factor for this
system.

Experiments show that a linear LP model captures the
primary resonance of symmetric-flapping insect-scale MAVs
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[13]; high frequency behavior resulting from structural modes,
nonlinear harmonics and rotational dynamics are not captured.

3. Energetics of hovering

With a model and solution for the dynamics of flapping, we
can begin our conceptual design. For a vehicle of a given wing
radius R and weightW , we size the actuator by first determining
the required blocked force. At the natural frequency, X̂ = q;
when combined with (8), we find

Fb = cω2
nX2. (9)

Note that we can easily transform any expression into its
rotational equivalent; here, Fb = cω2

n�
2/(2T )2. We define

the total and static total flapping angles (peak-to-peak) � ≡
2T X and �st ≡ 2Tδst . To determine the required flapping
frequency, we employ the constraint that at hover, W = 2L,
whereW is the total vehicle weight and L is the stroke-averaged
lift (thrust) generated by each wing, defined by our conventions
as the net vertical aerodynamic force. Substitute (3) into (2)
and take the average over one half-period:

L = 1

2
ρ

R4

r̂2
2

1

π

∫ π

0
CLmax sin (2α(s)) φ̇2

0 cos2(s) ds. (10)

This yields

L = 1

2
ρ

R4

r̂2
2

1

2
C̃Lω

2T 2X2, (11)

where we have defined a mean lift coefficient

C̃L ≡ CLmax

2

π

∫ π

0
sin (2α(s)) cos2(s) ds. (12)

We do not incorporate the factor of 1/2 seen leading C̃L

throughout the paper because it represents the cos2(ωt)
reduction in lift that results from sinusoidal flapping. If we
assume that wing pitching is also sinusoidal, then C̃L =
0.94CLmax for the case α0 = 45◦; the reduction in effective
CL is largely due to the sinusoidal flapping profile and not
wing pitching.

We substitute L = W/2 into (11) and rearrange to find the
angular flapping frequency required to maintain steady hover

ωn = 1

r̂2R2 1
2�

√
W

1
2C̃Lρ

. (13)

After substituting (5) and (13) into (9), we obtain the required
blocked force

Fb = TW
C̃D
1
2C̃L

r̂cpR. (14)

This simple result makes sense intuitively; the blocked force
that the actuator must supply is proportional to the mean drag
force, which is simply the vehicle weight divided by L/D.
The quantity T r̂cpR represents magnification of the drag force
through the transmission. In the wing frame, the blocked torque
is Qb = Fb/T .

3.1. Sizing the actuator

To develop a mass budget, we divide total vehicle mass mt

into mt = mp + mb + ma, the sum of payload, battery and
actuator masses. Here, ‘payload’ refers to all non-useful mass,
including structure, sensors, control actuators, electronics,
etc. Any vehicle components which are not the actuator and
battery must be accounted for. We also define mass fractions
μp = mp/mt , etc, for these components.

Lacking extensive data from successful designs, we will
assume a fixed value for μp and decide how to divide the
remaining mass budget 1−μp between the actuator and battery.
The actuator is sized to deliver the required δst and Fb. Any
remaining mass is left to the battery, μb = 1 − μp − μa.
Under this scheme, we have made μa an independent variable;
vehicle performance will drive its selection.

To develop a model for actuator mass, we follow the
approach of [14], in which the actuator is sized based on the
energy it must deliver each flapping period and the energy
density Sa (i.e. J kg−1) characteristic to actuators of its type.
For a linear bimorph actuator, this balance is given by

maSa = Fbδst . (15)

If the actuator requires power electronics or amplifier circuitry,
then the mass of these components must be accounted for by
including them in μp or by reducing Sa.

It is very important to clarify that with this expression
we are assuming a type of actuator in which the actuation
frequency and the flapping frequency are required to be the
same. This includes piezoelectric, electrostatic, SMA, EAP
and other linear2 strain-based actuators. Pneumatic, chemical
and insect flight muscles are other examples. The only
actuators that do not qualify are rotary-type (motors) which
can use a gearbox to decouple the actuation frequency from the
flapping frequency. The major weakness of linear actuators is
that their power density will drop as flapping frequency drops,
while a motor can maintain peak power output and power
density with a gearbox.

If a motor is used, the designer might consider a helicopter
MAV over a flapping-wing MAV, especially for larger vehicles.
There is some indication that revolving wings outperform
flapping wings in hover [10], but in practice, the superiority
of either approach has not been demonstrated conclusively
for gram-scale and sub-gram MAVs. Since helicopter design
is not the focus of this paper, we will primarily consider
linear actuators, which are not appropriate for helicopter
configurations.

Returning to (15), we substitute (14) to obtain

μa = g

Sa

C̃D

C̃L
r̂cpR�st . (16)

Based on this relationship, μa is no longer an independent
design parameter—its value is set when the designer selects R.
Note that μa does not depend on vehicle weight, but increases
linearly with R. This means that for R large enough, no feasible
design is possible; as R increases, μa grows until μa = 1−μp,
consuming all available vehicle mass and leaving no room for

2 Here ‘linear’ refers to ‘action along a straight line’, not linearity of an
actuator’s input–output relationship.
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a battery. This critical wing radius Rcrit sets an upper bound on
the size of the flapping vehicle, independent of vehicle mass,

Rcrit = (1 − μp)

�st r̂cp

C̃L

C̃D

Sa

g
, (17)

and thus the actuator mass fraction becomes

μa = (1 − μp)
R

Rcrit
. (18)

There is a limit to how small μp can be reduced and L/D
maximized; Rcrit depends primarily on the energy density
of the actuator technology. To get an idea of the magnitude
of Rcrit, we can make a few rough assumptions, namely
μp = 0.25, r̂cp = 0.6; this value is representative of typical
insect wings [11]; sinusoidal flapping with � = �st = 115◦

and symmetric sinusoidal wing pitching with α0 = 45◦, which
yields C̃L = 1.8 and C̃D = 1.9 from the robofly coefficients and
equations (3) and (12); Sa = 1.5 J kg−1: this value is chosen
because it is representative of both insect flight muscle [15]
and piezoelectric bimorph actuators [16]. With these numbers
(on Earth, g = 9.8m s−2) we obtain Rcrit = 91 mm. With
less payload, better aerodynamic efficiency or higher actuator
energy density, larger-winged vehicles are possible.

For this example, we have chosen q = 1 (� = �st). It
appears that a design with q > 1 (� held constant) will reduce
actuator mass and allow designs with larger wings. Whether
this is true or not depends on the details of the actuator. For
example, piezoelectric actuators are typically strain limited,
not field limited, so raising q results in an equivalent reduction
of Sa. You can reduce � and �st both, maintaining q = 1,
but experiments have shown that reducing flapping amplitude
is aerodynamically inefficient. The issue of high-q designs is
complex and demands independent attention.

3.2. Flight endurance

We know the required actuator mass fraction, but which R and
W do we pick? Answering this requires a performance goal.
We start by identifying designs that maximize flight endurance,
and later address flight speed and range. Endurance is a good
starting point because it speaks directly to the feasibility of a
hovering MAV. The expression for hover endurance is simply

t f = Sbmb

P/η
, (19)

where Sb is the battery energy density, η is the electrical-to-
mechanical efficiency of the actuator and associated power
electronics, and P is the mechanical power consumed in
flapping the wings. From our dynamic model of flapping, the
expression for power consumption at r = 1 is

Pn = 1

2
FbωnX. (20)

Substituting Fb and ωn using (14) and (13) gives

Pn

W
=

√
2

C̃D

C̃3/2
L

r̂cp

r̂2

√
W

ρR2
. (21)

This expression is ubiquitous in aircraft design—nearly
identical forms exist for airplanes and rotorcraft: P/W is
proportional to the square root of wing loading or disk loading,
defined as W/S, where S is an airplane’s total wing area or the
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Figure 4. For a given vehicle weight, flight endurance depends
quadratically on wing length. When R = Rcrit, μa = 1 − μp, leaving
no room for a battery, resulting in a flight time of zero. Maximum
flight time t∗

f occurs at R∗ = Rcrit/2.

area swept by a helicopter’s main rotor. Since t f is proportional
to W/Pn, it is clear that minimizing wing loading is critical to
maximizing flight endurance. After substitution, we obtain the
following expression for flight endurance:

t f =
√

2

2
η

Sb

g

(1−μp)√
W

C̃3/2
L

C̃D

r̂2

r̂cp

√
ρ

R

(
1− R

Rcrit

)
. (22)

The dependence of flight endurance on wing radius is
illustrated in figure 4. For a wing radius R∗ = Rcrit/2,
flight endurance is maximized. This quadratic dependence
on R results from two conflicting requirements: minimizing
R minimizes μa, increasing available battery energy;
maximizing R minimizes wing loading, reducing the power
required to hover. When R = R∗, actuator and battery mass
fractions are identical,

μ∗
a = μ∗

b = 1 − μp

2
, (23)

and the expression for maximum flight endurance is

t∗f =
√

2

8
η

Sa

g

Sb

g

(1 − μp)
2

√
W

C̃5/2
L

C̃2
D

r̂2

r̂2
cp

√
ρ 1

�st
. (24)

Why is there an inescapable reduction in t f as W
increases? Flight time is inversely proportional to P/W . Note
from (21) that maintaining P/W while increasing W requires
holding the wing loading constant; if we increase W , a
concomitant increase in R2 is required. Increasing R, however,
is not possible; when raised above Rcrit, savings from reduced
power consumption are more than wiped out by the decrease
in flight time resulting from a smaller battery.

With a few more assumptions, we can generate
representative flight endurance numbers: we assume η = 10%,
a figure again in line with piezoelectric actuators and insect
flight muscles [16, 15]; r̂2 = 0.56 and = 4, characteristic
values for insect wings [11]; Sb = 500 kJ kg−1, a typical value
for lithium polymer batteries [14]; air density ρ = 1.2 kg m−3.
Our choice for Sb may be optimistic because we do not account
for capacity derating during high C-rate discharges.

In figure 5, we plot flight endurance over R and mt .
Flight endurance continues to increase as mt decreases. Our
assumption of constant lift and drag coefficients breaks down
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Figure 5. Flight endurance (plotted in minutes) for two different payload mass models. A fixed payload requirement results in a local
maximum in flight endurance. Assumed performance values for the battery, actuator and aerodynamics are given in the text.

for Re less than about 100, which corresponds to a vehicle mass
of about 1 mg. The variation of other parameters that we have
assumed to be constant is likely, such as a probable increase
of μp as W drops. Fabrication limitations prevent continuous
miniaturization of vehicle components. For example, if an
additional fixed payload of 100 mg is applied, a local maximum
for flight endurance occurs, as shown in figure 5. If variations
in CL, CD, η, Sa, Sb or μp with changes in R and W are known,
either from previous designs or more sophisticated models,
these results should be modified appropriately.

From these results, it is clear that η are Sb are critical
parameters, with a great potential to increase flight endurance.
Insects are fortunate to carry carbohydrate or fat energy stores
with approximately 50 times the energy density of lithium
polymer batteries. Increasing the actuator energy density Sa

will increase flight time, but large improvements in Sa present
diminishing returns unless the designer is willing to increase
R to follow resulting increases in R∗. We will see shortly that
increasing R negatively impacts flight velocity and range.

It is tempting to use these results to optimize wing shapes
through variation of r̂cp, r̂2 and . Low aspect ratios, for a fixed
R, decrease wing loading by increasing wing area. However,
low wings may suffer reduced lift and drag coefficients
from increased tip losses and a reduction in chord-normalized
flapping amplitude. Additionally, our simplified estimates of
lift and drag do not account for induced flow effects and their
dependence on wing size and shape. Detailed optimization of
wing shape and flapping kinematics are second-order effects
to be investigated experimentally at a later design stage.

3.3. Flight speed and range

A simple way to predict flight speeds uses the advance ratio,
a non-dimensional parameter, J, defined as the ratio between
forward flight speed V and the mean wingtip velocity

J = V

2� f R
. (25)

From this expression, we can estimate V by assuming a
‘reasonable’ cruise value for J. A recent flapping MAV capable
of controlled hover and forward flight has a reported advance
ratio of 0.5 at top speed [5]. As J approaches and exceeds
1, our in-hover model cannot accurately predict lift and drag;
a tilted stroke plane is required to overcome rising parasitic
body drag, and the relative velocity from forward flight is non-
negligible in modeling wing aerodynamics. These issues will
affect our ability to accurately predict power consumption and
maximum range. Classically, aircraft and helicopters benefit
from a reduction in induced drag as flight speed increases, but
this is not universally observed in metabolic data from insects
[15]. The following analysis seeks only the basic scaling
of vehicle range at small J, assuming power consumption
is constant with flight speed. We begin by substituting the
flapping frequency (13) into (25) to obtain

V = 2J

π r̂2R

√
W

1
2C̃Lρ

. (26)

Achieving high flight speed implies heavy vehicles with small
wings. This trend toward smaller wings conflicts with the
prescription for maximum flight endurance, which is to grow
the wings until reaching the energy density limits of the
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actuator. Using the results for V (26) and t f (22), an estimate
of range dmax is obtained:

dmax = η
2J

π

Sb

g

C̃L

C̃D

1

r̂cp

(
1 − R

Rcrit

)
(1 − μp). (27)

Range is not a function of vehicle weight W ; it decreases
linearly from a maximum at R = 0 (obviously pathological) to
zero when R = Rcrit. An endurance-optimized design achieves
half the maximum theoretical range. Since flight endurance
depends quadratically on R in the neighborhood of Rcrit/2,
a balanced design (e.g. R = Rcrit/4) might trade a small
endurance penalty (−25%) for a larger gain in range (+50%).

4. Flapping dynamics and wing structural-inertial
efficiency

For every R–W combination, there is a unique flapping
frequency, given by (13), which ensures L = W/2. Actuator
stiffness k = Fb/δst is also fixed by this combination; wing
inertia is then set to achieve the required frequency ωn =√

k/m. Since wing inertia cannot be reduced indefinitely, there
may be regions of the design space where hover cannot be
achieved. To explore this limitation, we need a predictive
model for wing mass moment of inertia Iw as a function of
R and W .

Lightening the wings will negatively impact their
structural performance. To determine the lightest feasible
wings, we must establish a wing stiffness criteria. We model
each wing as a beam with the mean cross-sectional area Ac,
length R and mean density ρw. Under these assumptions, wing
inertia Iw scales as

Iw ∝ ρwAcR3. (28)

Bending stiffness requirements determine Ac. The actual
loading and deflection of a wing is very complex; we are
only interested in how wing deflection scales with changes in
wing length R and vehicle weight W . To assess wing stiffness,
we hypothetically clamp the wing at its base and load it at the
tip with a force equal to the vehicle weight W , and measure the
resulting tip deflection w. The Euler model of beam bending
yields

w ∝ WR3

EwIw,a
, (29)

where Ew is the Young modulus and Iw,a is the second moment
of area of the beam cross-section. Following Ashby [17], we
write the second moment of area as

Iw,a = I0φ
e
B = A2

c

4π
φe

B, (30)

where I0 is the second moment of area of a circle, and φe
B

is the shape factor of the beam cross-section. High-efficiency
shapes, such as I-beams, have a large shape factor; corrugations
in insect wings contribute to a high shape factor. We substitute
this expression into (29), substitute the non-dimensional tip
deflection ŵ = w/R, and solve for the cross-sectional area:

Ac ∝
√

WR√
Ewφe

Bŵ
. (31)

Substituting it into (28), we obtain

Iw =
√

WR4

M1
, (32)

where we have defined

M1 ≡ φw

√
Ew

ρw

√
ŵ, (33)

a performance measure of the wing’s structural efficiency,
which we seek to maximize. The term φw is an overall
measure of wing structural-inertial efficiency, encompassing
φe

B and efficiency improvements from wing tapering. We
recognize

√
Ew/ρw as the classic material selection figure-of-

merit for bending stiffness [17]. Permitting more tip deflection
(larger ŵ) reduces the stiffness requirement and allows wings
with lower inertia (larger M1). We cannot easily calculate
M1. This would require detailed knowledge of the shape
and mass distribution of the wing, and determination of
acceptable tip deflection ŵ. For a conceptual design, it is
much easier to empirically determine M1 from insect and
artificial wing data using (32). If our scaling assumptions are
correct, M1 will show little variation with R and W , as it
represents a wing ‘technology factor’ with respect to inertial
and structural efficiency. With a representative value for M1,
we can estimate the minimum achievable wing inertia for each
R–W combination.

Insect wing data is a good source for testing the scaling
prescribed by (32); using data from reference [11], figure 6
plots M1, derived from reported values of R, W and Iw. Also
included is a carbon fiber artificial wing, as reported in [4];
for this wing, W is set to the maximum lift obtained from
a pair of these wings in tethered flight testing. This wing
is representative of the ‘state-of-the-art’ in artificial wing
fabrication; the spars are laser-cut unidirectional ultra-high
modulus (UHM) carbon fiber prepreg, cured and bonded to
a 1.5 μm polyester film. While bending tests have confirmed
that these wings are comparable in stiffness to similarly sized
natural wings [18], their moment of inertia is higher, yielding
low M1 values (∼ 70) relative to most natural insect wings.

This Iw-scaling analysis is one of many plausible schemes.
For example, it could be assumed that the wing cross-sectional
area scales with R2 or that wing inertial loads drive bending
stiffness criteria; the basic dimensional analysis might predict
Iw ∼ WR2. We could not, however, find an alternative scaling
method with better correspondence to published insect wing
data. Figures-of-merit derived from these schemes showed
much stronger dependence on R and W . Future work in
optimizing wing structural–inertial efficiency may improve
our understanding of the scaling of Iw—particularly with
respect to artificial wings—but the chosen scaling is adequate
for the conceptual design phase.

With an estimate for the minimum achievable Iw,
the maximum achievable flapping frequency is ωmax =√

κ/(2Iw + ma,effT −2), where κ = k/T 2. Comparing this
maximum frequency with the required frequency (13), we
obtain a minimum wing radius

Rmin = �st

√
W

M1r̂cpr̂2
2C̃Dρ 1

4�2
, (34)
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Figure 7. Wing structural–inertial limits for different values of the M1 figure-of-merit overlay flight endurance results from figure 5.
Feasible designs must lie above these curves.

where we have assumed that the actuator effective mass
is a negligible contributor to overall effective mass. This
assumption is tested for high mass vehicles, but achievable
transmission ratios—up to 3 rad mm−1 in a single-stage
flexure-based transmission is feasible without extraordinary
effort—are sufficient to reduce actuator effective mass to an
insignificant level.

For a given W , designs with a wing radius below Rmin

cannot flap with a natural frequency high enough to generate
sufficient lift to hover. Figure 7 repeats the performance plots

of figure 5 with equation (34) overlaid. Feasible designs
must lie above the inertia-limit curves. For large enough M1,
maximum endurance is not restricted, but fast or heavy long-
range designs may still be limited. Where the inertia-limit
curve crosses the horizontal line R = Rcrit, we find a hard
upper-bound on the vehicle weight

Wmax =
[
M1(1 − μp)

Sa

g

C̃Lr̂2
2ρ

4

(
�

�st

)2
]2

. (35)
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Using our previously set representative values, we find
maximum vehicle masses of 12 and 20 g for M1 = 70 and
M1 = 90, respectively. While it is exciting to speculate on
the implications of this equation, particularly with respect to
establishing an upper bound on, say, hummingbird mass, the
quadratic dependence on nearly all parameters, especially Sa,
M1 and μp, precludes accurate predictions. On the other hand,
the scaling trend is clear: there are limits on the maximum
feasible weight for hovering MAVs.

The existence of large helicopters appears to contradict
this result. We determined Wmax by equating the expressions
for Rmin (34) and Rcrit (17). However, Rcrit is only defined for
linear-type actuators; if a motor-and-gearbox drive the wings,
this expression does not apply. If the actuator is characterized
by its power density, S′

a, then the actuator-sizing equation—
(15) for linear-type actuators—is replaced with Pn = S′

aμamt ,
and the expression for actuator mass fraction becomes

μa = g

S′
a

Pn

W
. (36)

There is no upper limit on R; as wing length increases,
actuator size and aerodynamic power decrease monotonically.
From (36) it is straightforward to re-derive expressions for
flight endurance and range. However, previous results for
aerodynamic power (21) and flight speed (26) remain the same.
Wing inertial-structural limits and the expression for Rmin are
also unchanged.

5. Discussion and future work

There are several important results worth summarizing. When
driven by linear (non-gearbox) actuators, a reduction in
flapping frequency decreases actuator power density. This sets
up a conflict between minimizing aerodynamic power and
maximizing actuator power density. For fixed payload mass
fraction, there is a fixed maximum wing length, independent
of vehicle mass; endurance-maximizing designs will have a
wing length half this maximum. For these designs, the battery
mass fraction and actuator mass fraction will always be equal,
no matter their respective energy densities. Using a motor and
gearbox to drive the wings removes the upper limit on wing
size, allowing high-mass designs that are not feasible when
using linear actuators.

Wing inertia determines the maximum possible flapping
frequency, which sets a lower bound on wing length and an
upper bound on flight velocity. These bounds hold for both
linear and motor actuators, but for linear actuators, finite wing
inertia also leads to a limit on maximum vehicle mass. Physi-
cal reasoning and morphological insect data indicate that wing
mass moment of inertia scales, roughly, as the product of wing
radius to the fourth power and the square root of body/vehicle
mass.

Opportunities for improvement and expansion of these
models are manifold. If the type of actuator is known, then
an improved model of power efficiency can be included. For
example, the low efficiency of piezoelectric actuators results
primarily from dielectric losses; a loss model can replace the
generic efficiency factor used here. If chemical or pneumatic
actuators are used, the effect of time-varying mass can be

included. Structural models and experimental data can replace
the assumption of constant payload mass fraction. Payload
models are easily modified to include known masses, such
as processing and power electronics, sensors and other fixed
payloads.

Our conceptual design does not yet cover the control
system. Many different control schemes are under active
research, and clear winners have not yet emerged. The
designer is forced to complete a detailed control system
design before performing vehicle sizing. In time, the
performance characteristics of the best control methods will
be determined, and these data will provide preliminary mass
and power estimates of the control system, allowing sizing and
performance calculations to be performed before the detailed
design phase.

Past the conceptual design phase, further refinements
include detailed selection and modeling of flapping
kinematics, transmission design, passive or active wing
rotation design, wing testing and planform selection, and
design and modeling of a vehicle control architecture; existing
research on these topics is extensive.

It would be unwise to draw quantitative conclusions from
any numerical results presented in this paper; for different
actuator types and battery technologies, there is a large
variation in energy density and efficiency—specifications
which have a tremendous impact on system performance. In
spite of this, the analytical results present clear design trends
worthy of examination. MAVs driven by linear actuators are
most appropriate for low-mass designs. As vehicle mass drops,
there is greater flexibility in selecting wing size and flight
endurance rises; fabrication limitations will set the minimum
feasible size. As vehicle mass rises, at some point it becomes
necessary to switch to motors. The precise cross-over mass—
perhaps in the range of a few grams—depends on the efficiency
and performance of available motors and linear actuators. Once
the switch to motors is made, the designer must consider
the advantages and disadvantages of moving to a helicopter
design. It is not yet clear if flapping MAVs are faster or more
maneuverable than their helicopter counterparts.

Flapping-wing MAVs show promising advantages,
especially at the scale of small flying insects. Advances in
fabrication and miniaturization continue to expand the feasible
design space of these tiny vehicles, but the dependence of
vehicle performance on design parameters is not always
direct or intuitive. Designs must meet a range of competing
performance requirements, such as size, payload, flight
endurance and speed. Optimizing indirect quantities, such
as power consumption and lift, is an incomplete approach.
Traditional aircraft conceptual design methods provide a
model for balancing design requirements and optimizing
performance. These ideas are easily and powerfully adapted
to flapping-wing MAVs; useful not only for current designs,
but in efficiently directing future research efforts to improve
performance.
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