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Non-linear resonance modeling and system design improvements for
underactuated flapping-wing vehicles*
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Abstract— Insect-scale flying robots are currently unable to
carry the power source and sensor suite required for au-
tonomous operation. To overcome this challenge, we developed
and experimentally verified a non-linear damping model of
actuation-limited flapping-wing vehicles with passively rotating
wing hinges. In agreement with studies on the wing dynamics
of honey bees, we found that the optimal angle of the passive
wing hinge in mid-stroke is about 70 ° rather than 45 —50 ° as
previously assumed. We further identified a narrow actuation
force window in which the occurrence of a sharp resonance
can be used to achieve both higher lift and efficiency. The
findings from our model informed design changes to the
Harvard Dual-Actuator Robobee, which resulted in a 130%
increase in mean lift from ~140 mg to 320 mg (with a vehicle
mass increase of only 5 — 8%), along with a corresponding
expected payload increase of 330 — 470% (30 — 40 mg to
170 mg). The power consumption only increased by ~55%,
making the new prototype 50% more efficient at lift production.
Our model provides a greater understanding of the dynamics
of this complex system, and the resulting lift and efficiency
improvements are expected to bring insect-scale flying robots
closer to autonomy.

I. INTRODUCTION

Real insects can have a lift-to-mass ratio of ~1.8 (e.g.
honey bees — see [1]), where the mass includes all of
the necessary components for flight, power, and control. In
contrast, while existing flapping-wing vehicles at the scale
of small birds (e.g. [2], [3]) have sufficient lift to carry
these components (although battery life is limited to several
minutes), vehicles at the insect scale have only achieved lift-
to-mass ratios of ~1.75 when not including power, sensors,
or control ([4], [5]), and ~1.2 with a payload sufficient for
sensors and control, but not power [6]. Hence it is clear that
we need to increase both the lift-to-actuator mass ratio and
the lift-to-power efficiency if such devices are to become
practical. Towards this end, we propose that non-linear
modeling of the system behavior is important to identify
more efficient operating conditions and system designs that
might otherwise be missed. Previous work has sought to

*This work was partially supported by the National Science Foundation
(award number CMMI-1251729), the Wyss Institute for Biologically In-
spired Engineering, and the Swiss Study Foundation. Any opinions, findings,
and conclusions or recommendations expressed in this material are those of
the authors and do not necessarily reflect the views of the National Science
Foundation or the Swiss Study Foundation.

INoah T. Jafferis and Robert J. Wood are with the John A. Paul-
son School of Engineering and Applied Sciences and the Wyss In-
stitute for Biologically Inspired Engineering, Harvard University, Cam-
bridge, MA 02138, USA njafferis@seas.harvard.edu,
rjwood@eecs.harvard.edu

2Moritz A. Graule is with the Department of Mechanical Engineer-
ing, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
graule@mit.edu

978-1-4673-8026-3/16/$31.00 ©2016 IEEE

approximate the drag felt by the actuation source as a linear
function of speed, even if the dynamics of the passive wing
rotation are non-linear (e.g. [7], [8]), which limits their ability
to be extended to a wide range of operating conditions.
In addition, we incorporate performance improvements in
actuator fabrication [9] and wing shape [6].

II. DYNAMIC MODEL AND EXPERIMENTAL
INVESTIGATION OF INSECT-SCALE WING
FLAPPING

A. Model Overview

In this work, we consider flapping-wing vehicles in which
the stroke angle (¢; see figure 1) is actively controlled — that
is, the input to the system is an applied time-varying force
which controls the stroke angle through the system dynamics.
The angle of attack of the wing is not controlled directly,
but instead varies passively due to aerodynamic and inertial
torques as well as a restoring torque provided by a passive
wing hinge. In our analysis, we refer to the wing hinge angle,
1, which is 90 °© minus the angle of attack, since this is zero
in the neutral position of the wing hinge (i.e. perpendicular
to the flapping direction; see figure 1). When analyzing the
dynamics of such a system, we propose that previously used
linear approximations to the wing drag felt by the actuator
as a function of speed (e.g. [7]) are not sufficient to explain
the resonance behavior in general. This is due to the fact
that the passive rotation of the wing results in a highly non-
linear drag force [10], which is expected to result in a greatly
reduced drag coefficient as the wing passively rotates to
greater wing hinge angles 1. Figure 2 illustrates this effect
by plotting the normalized amplitude versus frequency of
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Fig. 1. System diagram and naming conventions. v (t) is the wing hinge
angle, ¢(t) is the stroke angle, and x(t) is the displacement of the actuator
tip.
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Fig. 2. Amplitude per force frequency response plot illustrating the effect
of a harmonic oscillator transitioning from a state of high drag to a state of
low drag. Inset shows the variation in the frequency response with driving
force amplitude for a quadratic-damping harmonic oscillator.

a harmonic oscillator with two different drag coefficients,
one typical of the drag when @ = 0, and the other for
1) = 75 °. Since in the physical system the wing is allowed to
passively rotate, we expect the amplitude to transition from
the case of high drag to the case of low drag, as illustrated
in figure 2. To contrast this non-linear resonance with the
resonance behavior of a fixed-drag system, we consider
three systems (all driven with a sinusoidal input force)
whose normalized frequency response (vibration amplitude
per input force amplitude) are plotted in figure 2 for several
input force amplitudes: (i) a linear harmonic oscillator (not
plotted), (ii) a quadratic-damping harmonic oscillator (inset),
and (iii) a “passive-rotation” quadratic-damping harmonic
oscillator. For (i), the normalized frequency response is
independent of the magnitude of the input force. For (ii),
the increased damping coefficient at higher speeds results
in a reduction of the resonance frequency and a reduction
in the peak normalized amplitude as the force is increased.
For (iii), which is the scenario in the actual vehicle, the
situation is more complex — three regimes emerge: (a) for
low force amplitudes, the wing never reaches high enough
speeds to rotate the hinge sufficiently for drag reduction,
and the frequency response behaves as in (ii), with a high
drag coefficient. (b) For high force amplitudes, the necessary
speed is reached well before the un-damped resonance, and
the frequency response approaches that of (ii) but with a
lower drag coefficient. (c) Most interestingly, for a relatively
narrow range of medium forces, the necessary speed is
reached well past the high-damping resonance frequency,
but near or even slightly past the un-damped resonance
frequency (indicated by a vertical line in figure 2). In this
case, the frequency response shows an initial broad peak
corresponding to the highly damped resonance, followed by
a sharp peak as the drag coefficient drops rapidly. As in (ii),
this resonance frequency decreases with increasing force,
but unlike in (ii), the normalized amplitude peak actually
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Fig. 3. Instantaneous lift (blue: 1.8sin(2¢)) and drag (green: 1.9 +
1.5 cos(24))) coefficients and lift-to-drag ratio (red) as a function of hinge
angle.

increases with increasing force. This can be understood as
follows: the resonance frequency decreases with increasing
force for the same reason as in (ii), but in this regime, the
resonance frequency at low force is actually higher than
the un-damped resonance frequency. This means that higher
driving forces bring the resonance frequency closer to the
un-damped resonance frequency, which results in a higher
relative amplitude peak. This transitional force regime is
interesting because it is expected to provide considerably
better efficiency (defined as the lift to input power ratio) —
that is, the resonances are much sharper and the lift-to-drag
ratio is greater. As we will see later (figure 4), the onset of the
steep amplitude rise occurs when the maximum hinge angle
(¥,) 1s around 50°, which means that to take advantage
of this behavior we must allow 1), to be greater than this
value, contrary to the previous goal of 45—50 °. This follows
directly from the standard lift and drag expressions as given
by [10]: even though instantaneous lift is maximized at 45 °,
and mean lift (for ideal-phase sinusoidal flapping) when the
max hinge angle is 51 © for a fixed frequency (f) and stroke
angle amplitude (¢g), the instantaneous lift-to-drag ratio is
maximized at ~70° (depending on the exact lift and drag
parameters — an example plot shown in figure 3 uses the same
lift and drag coefficients as in [10]). Therefore, since the
actuator feels the drag force, the stroke angle amplitude (¢q)
is expected to increase as the maximum hinge angle (¢,,)
increases from 45 ° to 70 °. This more than compensates for
the reduced instantaneous lift, resulting in both higher lift and
higher efficiency, provided that the phase between the stroke
angle (¢(t)) and wing hinge angle (¢(¢)) is maintained near
90°. This analysis agrees well with studies of real insect
flapping; for example in [11], honeybees were observed to
use 1, ~ 60 — 70°. Further, to put this in perspective for
flapping-wing vehicles in general, we note that several key
features of our analysis, such as higher efficiency operation
at 70° wing hinge angle, are independent of the actuation
mechanism.

B. Model in Detail

The detailed model is comprised of a coupled set of
differential equations, which describe the actuator (1) and
wing hinge angle (2) dynamics. The first of these equations
looks like a standard harmonic oscillator describing the
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motion of the actuator tip (x(t)), except that the drag is
dependent on the wing hinge angle (¢(¢)) and varies with
velocity squared. Equation (2) includes the terms described
in [8] — in order, these are: inertia about the wing hinge axis,
stiffness of the wing hinge, rotational damping, rotational
torque generated by the lift and drag forces resulting from
the time-varying stroke angle (¢(t) = x(¢)T, where T is the
transmission ratio), and the last two terms give the wing-
hinge rotational torque produced by the inertia of the wing
about the stroke axis. The effective mass felt by the actuator
is me = (I, + Ium)T?, where I, and I, are the inertias
of the wing and the added-mass of the air surrounding the
wing about the stroke angle axis (z). The stiffness felt by
the actuator tip is given by K = K,.; + T2k, where K,
is the actuator stiffness and k; is the transmission stiffness.
As derived from [9], K, is given by the strain-dependent
expressions (3) and (4), where p, is a fitting coefficient to
account for an imperfect attachment between the actuator
and the airframe, p; is set to 0.8 to bring the predicted
free deflection of the actuator closer to its measured values
(in [9], the actuator deflections are slightly under-predicted),
wy, is the mean width of the actuator, G is a gain factor
(defined in [9]) determined by the shape of the actuator, ?,;
is the thickness of each PZT plate in the actuator, t.y is the
thickness of the actuator’s central carbon fiber layer, E.f is
the modulus of the carbon fiber, l,.; is the length of the
active portion of the actuator, [, is the ratio of the length
of the actuator’s rigid extension to the length of the PZT,
FE,.irn. and E,,,, are the minimum and maximum moduli of
the PZT under varying strain, €p is the strain at which the
modulus transitions from FE,,;, to F,,.., a1 represents the
steepness of this transition, and € = —|e;| is the magnitude
of the compressive strain in the actuator.

Emax _ Em,in 1 |:1 + eal(eoe):| (4)
2a1 € 1+ e®1¢0
The compressive strain in each of the two PZT plates is

_ (et ttep)
€12 =F l?)zt(l o (5)
The driving force provided by the actuator (derived from
[9]) is given by the difference in forces provided by each
PZT plate (F,.t = Fy — F5). Fy} and Fs are computed
according to (6), where p3 is a fitting coefficient to account

Ee = Emin -

for an imperfect attachment between the actuator and the air
frame, ao represents a slight linear increase in the force with
increasing compressive strain, fs1 mi, and f31 mqy are the
minimum and maximum values of the piezoelectric stress
per field coupling coefficient in the field dependency of this
piezoelectric coupling coefficient, & is the field at which
this transition occurs, ag represents the steepness of this
transition and a4 represents a slight linear decline in the piezo
stress coefficient at high fields. The time-varying electric
field applied to each of the PZT plates,

E1a(t) = (0.5V,, /tper) (1 F sin2m(1 + 15¢/2)])  (7)

(with applied peak-to-peak voltage V), is set to be a
sinusoidal frequency sweep beginning at 1 Hz at time ¢ty = 0
and increasing in frequency by 15Hz per second. Lastly,
C4,p are the standard drag coefficients given by

Cap =0.5pA,Repis TP R?by o, (8)

where p is the density of air, A, is the wing area, R, is
the radial center of pressure, 75 is the standard wing-shape
parameter, R is the distance from the transmission flexure to
the wing tip, b1.2 = (bpax £ bimin)/2, and byey and by,
give the drag at v» = 90° and 0° respectively. Moving on
to (2), I, is the inertia of the wing about the wing hinge
axis (x), I, is the coupling inertia between the z and y
axes, Ky 18 the stiffness of the passive wing hinge, and the
damping coefficient for the wing hinge rotation is given by

Cc = 0.5p A Wepr W3 Wbz 9)

Wep1, W2, and W are analogous to R, 72, and R, but for
rotation about x instead of z. In the coefficient for the lift
and drag torque term (10), the effective chord-wise center of
pressure as a function of wing hinge angle is given (as in
[12] and [8]) by

2
ch2 - Wau (pmzn + (pma:r: _pmzn) 1- 7/]7_[‘> (ll)

where W,,, = A, /R is the mean width of the wing, and
Pmin and p,,q. are fitting parameters in our case.
C. Experimental Validation and Parameter Fitting

We built and characterized a test device to experimentally
validate this non-linear resonance and tune parameter values
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Fig. 4. Data and model fit (parameter values given in table 1) for (a)

peak-to-peak stroke angle (2¢9) normalized by peak-to-peak applied voltage
(Vpp), and (b) maximum wing hinge angle () plotted as a function of
frequency for several applied voltages (listed by the peak-to-peak voltage).
In (b), the data shown is the average of the measured inner and outer wing
spars angles.

in the dynamics equations. This vehicle is the same as
the Harvard Dual-Actuator Robobee [5] except for the use
of actuators fabricated according to the improved methods
described in [9]. Figure 4 shows 2¢q/V,p,, and ), as
functions of frequency for several input voltages, along
with the model results. The measurements are obtained by
recording the flapping of the wing with a high-speed camera
looking in a direction perpendicular to the plane of the wing
stroke motion. This allows ¢(t) to be measured directly by
tracking the leading edge of the wing, and (t) can be
calculated from the projected angle between the leading edge
and the wing spars. Both spars are tracked, as some twisting
of the wing occurs - the values shown are the average of
the inner and outer spar angles. While all of the flapping
dynamics experiments in this work are performed with the
airframe fixed in place, we do not expect this to result in
significantly different behavior than that in hovering flight.
This is because the inertia of the airframe is much greater
than that of the wings, and the high flapping frequency

does not provide enough time for the airframe to move
significantly. Accordingly, the slow-motion videos of the
Harvard Dual-Actuator Bee [4] show that the body’s motion
during stable hovering is small and slow compared to the
wing motion.

The values used for all parameters in the model equations
are shown in table I — in cases where the value used differs
from an expected value, the value is shown as a fitting
pre-factor multiplied by the expected value. The parameters
f31,mins f31,mazv 41,234, 609 Emins Emama €0 and ch are
as used in the actuator model in [9]. tp.¢, tef, lpat, Wn,
[, and w, are as measured for the actuator dimensions.
Expected values for the wing inertia parameters I,., I,
and [, are determined from a SolidWorks model — for the
fit, I,, and I, are very close to these values, but I, is
only 29% of the expected value. The inertia of the added air
mass I, is used as a fitting parameter (a rough estimate
for this is the inertia of a cylinder of air with length R and
diameter W,, — the value we use is approximately twice
this estimate). The parameters relating to wing shape (R,
79, W, s, and A,,) are as calculated in SolidWorks. The
aerodynamic lift and drag coefficients are given as fitting
pre-factors multiplied by the values measured in [10] for
Drosophila wings. The rotational center of pressures, R,
and Wy, are given as fitting parameters multiplied by
7oR and waW, respectively. Our values for actuator force
and stiffness are ~20 — 30% lower (scaled by p3 and py
respectively) than expected due to non-ideal base attachment
— that is, with the improved actuators [9] bending no longer
occurs at the interface between the PZT and the actuator
base, but is now seen to occur at the attachment between
the actuator base and the robot airframe (i.e. mechanical
ground). This bending is less than that typically found in
the dual-actuator bee, but there is still potential for further
improvement. To determine the transmission stiffness in the
actuator coordinate frame, K, we first look at the ideal value
given by T2k, where k; is calculated from simple beam
bending theory. As the value achieved in the vehicle may
differ from this due to non-idealities such as misalignments,
we perform a simple measurement of the actuator deflection
at DC both before and after the transmission is connected —
this gives us the effective transmission stiffness as a fraction
of the effective actuator stiffness (at the strain condition in
which the measurement is taken). For this vehicle, we find
that these are equal (i.e. K; ~ psK, when measured at
a tip deflection of about 480 um peak-to-peak). As can be
seen in figure 4a, the model now matches the stroke angle
amplitude data quite well over a range of different force
inputs, with both showing the non-linear resonance behavior
described in section II-A. Figure 4b shows that the maximum
wing hinge angle data match the model well near the main
resonance frequency (where we expect the vehicle to be
operating), but the model predicts small resonance peaks
at about 60 Hz and 35 Hz which are not observed in the
data. While the data is not finely spaced enough to rule
out the presence of small peaks, this likely indicates that
there is more rotational damping at low speeds then expected
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TABLE I
MODEL PARAMETERS (FOR ACTUATOR, TRANSMISSION, AND WING)

Symbol Value Unit
f31,min 14 N/Vm
f31,ma9: 29 N/Vm
a1 8000

a2 —230

a3 10 pum/V
a4 69 nm/V
&o 0.4 V/pum
FErin 38.5 GPa
Emax 81 GPa

€0 —0.047 %

E.j 340 GPa
tpat 135 wm

tey 50 pm

lpzt 9 mm

W 1.125 mm

Iy 0.25

Wy 1.556

Ps 0.8

P4 0.79

p3 0.7

Cact 10.1 nF

T 3333 rad/m
K: 197.7 N/m
I, 51.1 mg mm?
Tam 10.22 mg mm?
Ipx 0.95 x 1.29 mg mm?
Iz 0.29 x 2.8 mg mm?
R 17 mm

Ay 54.59 mm?

@) 0.564

w 4.5 mm

wWa 0.43

bmaz 1.25 x 3.4

bmin 0.39 x 0.4

br, 1.8

Reyp 1.42 x 9.56 mm
Wept 0.39 x 1.93 mm
Pmin 0.132

Pmazx 0.151

Kwh 0.985 x 1.52 uNm/rad

from the model. Additionally, twisting of the wing was not
accounted for in our model, which may contribute to the
discrepancy in the 60-100 Hz range. Finally, we note that,
with the lower actuator force and stiffness in the original
dual-actuator bee (which did not use the fabrication method
described in [9]), many of those vehicles did not enter into
the force window necessary to achieve the sharp resonances,
or if they did it required higher voltages to get there.

III. IMPLICATIONS FOR IMPROVED VEHICLE DESIGN

A. Model-Informed Design Principles

Now that we have at hand a reasonable model for the
non-linear resonance behavior of our flapping-wing robot,
we consider how we can use this model to inform design
changes for an improved vehicle. First, as noted above, we
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Normalized stroke amplitude ( °/ Vpp )
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Fig. 5. Normalized frequency response plots from the model for three trans-
mission ratios (and the corresponding values of K7 and k,,p). T1 represents
the initial values of T', k7, and K.p, T2 represents 0.87, 0.8*2‘14HT,
0.8 1471, and T3 represents 0.6T, 0.6~ 214 kp, 0.6 147k

can choose k. to achieve ¢,,, =~ 70 ° instead of 45—50° in
order to achieve greater efficiency (and thus greater lift for
an actuation-limited vehicle). Beyond that, there are a large
number of system properties that could be varied — these can
be roughly split into three categories of parameters: actua-
tion, wings, and the coupling between these (transmission).
In this paper we keep the actuator size fixed and consider
primarily the transmission, although some changes to the
wings will be noted later. The main transmission parameters
are the transmission ratio and stiffness (we ignore its inertia
and damping, as these are typically small compared to that of
the wing). Considering first the transmission ratio, note that
pervious work [7] has suggested that reducing it somewhat
results in greater lift, while further reduction leads to declin-
ing lift. However, this analysis assumed that the operation
amplitude was the same as the DC amplitude, and kept the
transmission bending stiffness fixed. Here we use our model
of the dynamics to predict the resonance amplitude as well as
frequency, and also allow the transmission stiffness and wing
hinge stiffness to be changed. With this analysis, we will see
that decreasing T increases the resonance frequency faster
than decreasing the amplitude at resonance, at least until the
effective mass felt by the actuator becomes dominated by the
actuator mass rather than the wing inertia. For our case, the
effective actuator mass can be estimated from the unloaded
resonance (f;.s is about 900 Hz) as K et/ (27 fres)? &~ 7mg
(this is smaller than the actual actuator mass of 25mg, as
expected), while the effective mass due to the wing inertia
is ~570 mg (and with the added mass effect due to the air,
~700mg). Hence, T' would need to be reduced by a factor of
3 —4 for the actuator mass to be even a 10% contribution, so
we ignore this contribution in our analysis. In more detail, we
see that the resonance frequency increases roughly according
to 1/T at the same applied voltage amplitude, provided
that the transmission stiffness and wing hinge stiffness are
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increased in such a way as to ensure that a similar family of
curves occurs (i.e. the relation between the resonance curves
for the various applied voltages). If these parameters are
scaled properly, the amplitude at resonance decreases slower
than the resonance frequency increases, and the square of the
resulting speed increase can be matched with the increase
in wing hinge stiffness, which to first order is expected to
result in similar wing hinge rotation. While the exact required
scaling of k7 and k. is not derived in this paper, due
to uncertainty in the exact parameter values, we note that
for the fit described in section II-C, an approximate match
can be found by scaling k7 with 1/7214 (note that this is
only slightly more than the 1/7? scaling required to keep
the transmission stiffness constant in the actuator coordinate
frame) and scaling k.5, with 1/7%47. Figure 5 shows the
result of following these scaling relations for transmission
ratio reductions of 20% and 40%. Together this implies that
we expect the mean lift force to scale approximately as
1/T'47 (since k., increases by about the same as (¢ f)2,
we can use this as a rough estimate for lift), while the input
power (P) only increases as ~1/T" (since this is the change
in frequency for the same voltage). P is defined here as
0.5C,.Vpp?f (where Cg.; is the total capacitance of both
actuators), however, given typical boost-converter efficien-
cies at this scale, the actual power required is expected to be
2-3 times larger in practice. Note that this analysis presumes
that the initial configuration before changing 7' gives us a
“desirable” family of frequency response curves, but does
not seek to determine what the ideal such picture is (besides
noting that the presence of the sharp non-linear resonance
peaks is intimately tied to allowing the wing hinge to rotate
past about 50°, and is expected to result in greater lift
and efficiency). From a system-wide perspective, there may
be several tradeoffs involved in determining the ideal such
picture, such as maximum lift (utilizing the highest available
voltage) vs. maximum efficiency (utilizing lower voltages but
reaching close to maximal lift).

Several take-away lessons from the model presented above
are as follows: (1) Design for ,,4, =~ 70° instead of
45 — 50°. (2) Decrease transmission ratio until the actu-
ator mass becomes significant relative to the wing inertia.
(3) Increase transmission stiffness with 1/7>!* and wing
hinge stiffness with 1/7*47 to maintain a similar family of
frequency response curves. Note that this scaling implies that
the actuator/transmission undamped resonance frequency
(Kaet + K3)2/(I%5T)) increases faster than the wing
hinge undamped resonance frequency (k%7 /I, ). Therefore,
such scaling is likely not sustainable as these frequencies ap-
proach one another unless something else about the system,
such as wing inertia values, is also changed. (4) For the
coupled changes in transmission ratio and stiffness and wing
hinge stiffness, we expect an increase in mean lift of about
1/ TY47 and an efficiency increase of about 1/ 7047 bearing
in mind that these scaling relations may change somewhat
with variations in the many other parameters involved in the
complete system. We also expect further increases in lift and
efficiency from the change in ,,,, — for example, the lift-

to-drag ratio is about 50% higher at 1,4, = 70° than at
45 — 50° in figure 3.

B. Vehicle Redesign

Now that we have a prediction for several vehicle design
changes expected to improve performance, we proceed to
the actual construction of a test device incorporating these
changes. As discussed above, our model indicates that we
should reduce the transmission ratio considerably to im-
prove performance; however, this effect is not “free” from
a system-wide perspective. This is due to the fact that as
the transmission ratio is reduced, the actuator must undergo
greater strain to accomplish the same stroke amplitude, and
since the actuator is composed of a brittle material its
lifetime is expected to drop rapidly as the ultimate failure
strain is approached (for example, in [9], a 20% change
in failure strain resulted in a 5x change in lifetime). In
this perspective, transmission ratio reduction is essentially
a trade-off between lift and lifetime. In the original Robobee
[4], actuator lifetime was already relatively short, so further
reduction was not feasible; however, with the ~30x increase
in lifetime at the same tip deflection reported in [9], such a
tradeoff is now practical. To maintain a reasonable lifetime,
we reduce the transmission ratio by 20% from 3333 rad/m
to 2666 rad /m. The approximate scaling relations suggested
by the model would then indicate that we should increase xp
by 1/0.8%1% = 1.61x and k by 1/0.8%47 = 1.39x. This
corresponds to the parameters used in figure Sb. Before we
proceed to choose our new stiffness values, we note two
other changes in the design of our new test vehicle: (1)
To make assembly easier, we followed a fabrication design
inspired by “BigBee” [6]. This design utilizes a separate
transmission for each actuator and replaces the “spherical”
joint of the dual-actuator bee’s transmission [5] with a
parallel geometry that is easier to assemble reproducibly.
However, a parallel joint causes increased strain in the
transmission flexures and actuator, which would prevent us
from reducing the transmission ratio as desired. To alleviate
this issue we inserted additional “tabs” between the actuator
tip and the transmission that allow some degree of rotation
perpendicular to the transmission flexures. (2) Optimization

i Capacitive

displacement
sensor

Wing hinge

Bending beam transducer‘

(force to displacement)\

10 mm

Fig. 6. A test vehicle mounted on a capacitive force sensor.

3239



0.5 350 - .
S 045} il —4&— 175V
= 300} ]
< o4l | — 185V
5 0.
E 035k i 2501 —+—200V i
g ’
g 0.3} 1 E 200! 8
—é 0.255 4 =
2 02 S 150t q
- B 7 [}
g 0.15 =
= 0.15¢ 1 100} E
£ o1} 1
Z 50+ i
005 (a) . _ (b)
O i i i i i i i i » L L L L I I
0 20 40 60 80 100 120 140 160 180 20 40 60 80 100 120 140 160 180
Frequency (Hz) Frequency (Hz)
~ 90
bt 75V o
e} 80} . 1601 — 150 1z : : 1
s 70} 140|{ — 145 Hz 1
Ef = —— 140 Hz
=2 60 21200 30m, 1
£ 50 E:B 100 —— 120 Hz i
o E —— 110 Hz / ’ |
g 40} g 808 — 100 Hz
£ 30! £ 60— 90Hz 1
£ P Bt}
E 20} —— 50Hz 1
% 10t 20¢ (d)’
= 0 T g
0 e i i i i i i i i i i i i i i
20 40 60 80 100 120 140 160 180 0 0.5 1 15 2 2.5 3 35 4 45
Frequency (Hz) Time (s)

Fig. 7.

Characterization results for the improved vehicle. (a) Normalized stroke amplitude. (b) Mean lift versus frequency. (¢) Maximum wing hinge

angle (average of measurements taken from the inner and outer wing spars) versus frequency. (d) Mean lift per wing shown over the duration of each
measurement — the voltage is initially off, then ramps up to 200 V,, stays there for about one second, and then ramps back down to zero.

of wing shape is outside the scope of this work, however,
we use wings shaped as in [6] (but with the same area as
the dual-actuator bee), due to their higher lift-to-drag ratio as
compared to those used in the dual-actuator bee. Returning
now to determining the new kp, first recall from section
II-C that the value calculated from beam bending theory
was less than that measured in the robot, with the difference
likely due to misalignment during assembly. Given the easier
assembly of our new test vehicle, we anticipate this issue to
be mostly resolved, and choose k7 to result directly in the
desired stiffness. On the other hand, while this vehicle used
a slightly different actuator-to-airframe attachment than in
our first test vehicle, some bending at this interface is still
present, so for the purposes of this paper we assume that
no significant difference in this area is expected. Thus we
increase k7 by 2.6 from 10.8 uNm/rad to 28.2 uNm/rad,
with measurements indicating that K'p . ¢ ¢ is about 215 N /m,
8% greater than in our first test vehicle (198 N/m), and close
to the desired scaling of 1.61 x 0.82 1.03x. Finally,
we increase Kyp by 50% from 1.52 to 2.29 uNm/rad -
somewhat more than that prescribed by the model to partially
account for the easier rotation of the new wings. In order to
produce this stiffer wing hinge, we simply widen the hinge —
this ensures that the strain and off-axis twisting of the wing
hinge are not adversely affected. The attachment between
the wing and the wing hinge is adjusted to ensure that the
position of the wing is not shifted out by this change.

IV. RESULTS

To characterize our new test vehicle, we mount it to a
custom-built capacitive force sensor (figure 6) and record the
wing flapping with a high-speed camera as for our earlier
tests. The resulting scaled wing stroke amplitudes, mean
lift, and max wing hinge angle measurements are shown in
figure 7a, b, and c, respectively, as a function of frequency.
Since only one wing was used in these tests, the reported
lift is the measured lift multiplied by two (other tests have
shown that the lift measured with two wings is within a few
percent of the sum of the lifts from each wing individually).
As can be seen (figure 7a), the same sharp resonance in
amplitude is seen as in the previous test device, and mean lift
(figure 7b) rises to a maximum measured value of 320 mg,
130% greater than the 140 mg of the original dual-actuator
bee. Figure 7d shows mean lift measurements for each of
the one second flapping tests at 200 V. At the peak lift,
155 Hz, 200 V operating point, we have an input power P =
0.5Cqct Vi, f = 31mW, only 55% higher than the 20 mW
reported for the dual-actuator bee [4]. This results in a lift-to-
power efficiency increase of ~50%. Further, we can estimate
the payload that this vehicle can carry (table II) by noting
that in [4] and [6], the maximum mass that those vehicles
were capable of lifting during hovering flight was about 80%
of their maximum lift measurements, due to the need for
extra lift to allow for control. Comparing these results to the
model, we expected a lift increase of 1/0.8147 = 1.39x
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TABLE I
DESIGN AND PERFORMANCE PARAMETERS OF PREVIOUS AND
MODEL-INFORMED INSECT-SCALE FLAPPING WING FLYER

Parameter  Previous [4] Improved Remarks
€f 0.25% 0.32% see [9]
€maz 0.066% 0.079%

T 3333rad/m 2666 rad/m

K 198 N/m 215N/m effective
Gr spherical parallel + tabs

Kwh 1.52 uNm/rad 2.29 uNm/rad

My 80 mg 87 mg

Fromax 140 mg 320 mg

n 7mg/mW 10.3 mg/mW

Mp] 30 —40mg 170 mg predicted

from the transmission change (and an efficiency increase of
1/0.8%%% = 1.11), combined with an estimated 50% increase
in lift and efficiency from the higher ¥,,,,. All together,
this predicts an increase in lift from 140 mg to ~290 mg
and about a 66% increase in efficiency. Thus, our results are
within ~10% of our predictions (the lift is 10% greater than
predicted and the efficiency is 10% lower), indicating that
the model can provide useful guidelines for vehicle design.
The differences that we do see are likely due to the wing
shape change. Note that the resonance frequency is around
160 Hz, which is slightly higher than predicted (see figure 5)
— this is likely due to a combination of the new wing shape
and the wing hinge being slightly stiffer than that prescribed
by the model (section III-B). Finally, we note that given
the peak-to-peak stroke angle 2¢y of 92°, the maximum
strain experienced by the actuator in the peak-lift condition
is about what it would have been in the original Robobee
at 2¢9 = 115° — this is 15 — 25% more than the typical
operation in that vehicle. Since this strain increase is less
than the 28% increase in actuator failure strain (see [9] and
table II), it could be feasible to reduce the transmission ratio
slightly more in future designs, resulting in even greater lift
and efficiency.

V. CONCLUSIONS

We identify and describe nonlinear resonance behavior in
passive-rotation flapping-wing systems through both model-
ing and experimental validation. This behavior occurs only
over a relatively narrow range of actuation forces, requiring
careful matching of several system parameters to achieve
(e.g. actuator force and stiffness, transmission ratio and
stiffness, and wing hinge stiffness) and results in higher lift
and efficiency. This is primarily due to the greater maximum
wing hinge rotation (about 70 ° instead of 45 — 50 °), which
is consistent with that found in real insects. The model is
shown to be reasonably effective at predicting how to further
increase lift through transmission ratio reduction by varying
transmission ratio, transmission stiffness, and wing hinge
stiffness simultaneously to ensure that the available forces
remain within the required window. A new test vehicle is
constructed according to these guidelines (design and per-

Fig. 8. Complete vehicle.

formance parameters are shown in table II and the complete
vehicle is shown in figure 8), and is shown to achieve a
130% increase in mean lift, resulting in the lift-to-mass ratio
(without power, sensors, or control) increasing from 1.75 to
3.7, and an efficiency increase of 50%, without requiring
any change in actuator size or wing area. Based on our
measured lift forces, we expect a corresponding expected
payload increase of 330 — 470% (30 — 40 mg to 170 mg),
which will be utilized in future work on on-board sensing,
control, and power.
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