Distributed Colony-Level Algorithm
Switching for Robot Swarm Foraging

Nicholas Hoff, Robert Wood, Radhika Nagpal

Abstract

Swarm robotics utilizes a large number of simple robots to accomplish a
task, instead of a single complex robot. Communications constraints often
force these systems to be distributed and leaderless, placing restrictions on
the types of algorithms which can be executed by the swarm. The perfor-
mance of a swarm algorithm is affected by the environment in which the
swarm operates. Different environments may call for different algorithms to
be chosen, but often no single robot has enough information to make this de-
cision. In this paper, we focus on foraging as a multi-robot task and present
two distributed foraging algorithms, each of which performs best for differ-
ent food locations. We then present a third adaptive algorithm in which the
swarm as a whole is able to choose the best algorithm for the given situation
by combining individual-level and distributed colony-level algorithm switch-
ing. We show that this adaptive method combines the benefits of the other
methods, and yields the best overall performance.

1 Introduction

The performance of a robot swarm algorithm is affected by the environment
in which it operates. In a search task for example, the location and number of
search targets and presence or absence of obstacles could affect the efficiency
of the swarm. One algorithm may be fast but fail in the presence of obstacles,
and a slower one may be more resilient. Because the specifics of the environ-
ment are generally not known before hand, we would like the swarm itself to
be able to intelligently change its own algorithm based on the environment.

Harvard University
{nhoff, rjwood, rad}@eecs.harvard.edu

2 Nicholas Hoff, Robert Wood, Radhika Nagpal

An interesting challenge is whether a robot swarm, as a whole, can assess
the success or failure of an algorithm and, as a whole, switch algorithms to
increase its success.

Colony-level algorithm switching is difficult for two reasons. First, the in-
formation on which the colony will base its decision is distributed throughout
the environment and not detectable by any one robot. Therefore, the envi-
ronment detection must be distributed. Second, if a swarm algorithm relies
on strong coordination, then switches must be nearly unanimous and syn-
chronized. Changing algorithms will not help unless all individuals change to
the same algorithm at the same time. Both of these actions—environment
sensing and algorithm switching—must truly take place on the colony level,
as opposed to the individual level.

In this work, we focus on the problem of foraging for robot swarms. For-
aging algorithms enable a collection of robots to search a space for a goal
(the ‘food’), then return it incrementally to the nest. We assume robots with
simple sensing and communication capabilities that can exchange simple mes-
sages (a few bits) directionally with other robots within a short range. Since
the robots do not have global localization or odometry, coordination within
the swarm is essential for performing the task efficiently.

We present three distributed foraging algorithms. All of the algorithms are
based on a few core “sub-algorithms” which the swarm intelligently switches
between in various combinations and at various times. The first is a gradient—
based method in which robots form a stationary beacon field around the nest
to create gradients to the nest and food. The second is an area—sweeping algo-
rithm (called “sweeper”) in which robots use virtual forces to coordinate and
form a line which sweeps the world. Finally, in the third algorithm (“adap-
tive”), the colony cooperates to detect when one algorithms is failing and
switches to another, thus increasing performance.

To evaluate the algorithms, we place food at varying distances from the
nest. We find that the gradient algorithm works fast but only in a short range,
and the sweeper algorithms is slower but has a larger range. We show that
the adaptive algorithm is capable of high-level switching, and that the swarm
is able to choose the algorithm best suited to the current food location.

1.1 Related Work

Gradient-based Foraging Gradient-based foraging methods create a gra-
dient leading to the goal, using the sensing capabilities of the robot, such as
chemical sensing or communication. Algorithms using many different types
of sensing capabilities have been studied. Algorithms exist for robots with
global positioning and global communication [18], robots that use physical
marks to leave a trail [9, 11], robots that use a pre-deployed sensor network
[10], and robots that use deployable beacons [6]. Our work focuses on robots
with directional communication. Payton et.al. have developed an algorithm

Distributed Colony-Level Algorithm Switching for Robot Swarm Foraging 3

in which each robot can receive messages in a small radius, and use this to
create a virtual pheromone. Our gradient algorithm [8] is similar to [5], [19],
and [21] in that directional communication is used to transmit relative posi-
tion information to establish the gradient. Networking researchers would also
recognize the gradient algorithm as being very similar to “hop-count” routing
[22].

Area-Sweeping Foraging In this algorithm, inter-robot virtual forces are
used to make movement decisions which cause the swarm to adapt a line
shape. Spears studied physics-based control of vehicle swarms, with attrac-
tive and repulsive forces forming a lattice of vehicles [20]. In the field of sen-
sor networks, Howard et.al. have used potential fields to achieve dispersion
of nodes [7]. The closest work to our application is Balch’s notion of social
potentials [3]. Social potentials involve robots navigating to a goal while re-
maining in a formation, feeling virtual forces based on the position of the
goal and the relative positions of other robots. These algorithms are focused
on maintaining a formation. We use a similar concept in which robots feel
virtual forces, and we show how to use the formation to search the region.
We use this to develop a virtual forces-based foraging method.

Algorithm Switching Multiple behaviors within a single algorithm are well-
known inside the swarm algorithm community [16]. Matari¢ and Arkin have
worked extensively in behavior-based robotics [2, 4]. It is common for in-
dividual robots to switch between the behaviors of food collecting, obstacle
avoidance, and resting, for example. Parker has studied distributed consensus
in a swarm setting, using it to enable the swarm to move between subtasks in
an overall task [17]. We focus on foraging, and do not use formal distributed
consensus (or assume that our robots are ‘well-stirred’). McLurkin has de-
veloped a large range of robot swarm behaviors[14] as well as dynamic task
assignment methods for individual robots within a swarm [13]. These meth-
ods focus on individuals, whereas we need a method for the swarm as a whole
to switch algorithms.

The central contribution of this work is an adaptive foraging method in
which the swarm makes colony-level decisions based on distributed informa-
tion, choosing the algorithm best suited to the given food location.

2 Robot and Task Model

For our robots, we use a simple model inspired by recent swarm robot hard-
ware, such as the E-Puck [15] (shown in figure 1b), the RBZ communication
board (an E-Puck extension described in [1]), McLurkin’s SwarmBots [12],
and Payton’s pherobots [5]. We assume a simple non-holonomic robot that
moves and turns in continuous space. Each robot has sensors for nest, food,
and obstacles in direct proximity to the robot. The sweeper algorithm also
requires two of the robots to have compasses. Each robot can communi-

4 Nicholas Hoff, Robert Wood, Radhika Nagpal

comm radius ”
610
L) t . R
* OCH D 2
@ O robot food,obstade A 30,
Tt sensor range 7 e I
® . 3 f: 2w
°e 23 o/
u R - (o}
range and bearing .
[nest L measurement w ®
O food omnidirectional -
{ transmission \
@ robot ¥ '

Fig. 1: The communication and sensing capabilities of the robots (1a), the
E-Puck robot with communication ring (1b), and a simulation snapshot with
a blowup for detail (1c).

cate with nearby robots and measure the range and bearing from which each
transmission came. Robots do not have global position measurement or global
communication. See figure 1a.

For the foraging task, we assume a world with a nest in the middle and one
unlimited food source placed randomly. The swarm must find the food, then
begin returning food units to the nest. Robots can pick up / drop food units
when in direct proximity to the food / nest. Because the robots have no direct
position measurement system, they must coordinate in order to maintain and
share information about their own position and the food position.

To test the algorithms, we developed a continuous-world multi-robot sim-
ulator. The simulator models robots, food, and the nest, along with proper
movement and interactions (collisions, communication). We chose a contin-
uous world model over a gridded world environment so that the algorithms
would face real problems such as collisions and congestion. A snapshot of the
simulator is shown in figure 1c.

3 Algorithm Description

In this section, we will describe the three algorithms and the means by which
algorithm switches are made at the individual- and colony-level. Figure 2
diagrams the relationship between the algorithms and their parts.

3.1 Gradient Algorithm

Robots need a way to navigate to the food and the nest. The gradient algo-
rithm provides this information using two gradients—one leading to the nest,
and a second leading to the food once it is found. To implement these gradi-
ents, some robots decide to stop their normal food searching and become fixed

Distributed Colony-Level Algorithm Switching for Robot Swarm Foraging 5

(adaptive N
(sweeper)
\:tm
gradient ort hear non-zero foodGradient
hear more than n beacons (prob p) \1 B
ore than.n beacor s prob Pl gradient
. \q clock hear more than n beacons (prob p)
P - star
beacon walker o e\ random walk

if see nest if have food normal if see obstacle

nestGradient = 1 90 to min nestGradient calculate total orce beacon walker turn a random amount
if see food else e l irecti else

foodGradient = 1 9o to min move in that direction if see nest it have food move forward

Ise if hear no gradient nestGradient = 1 Jotomin

- random walk if see food else
gradients = min+1 puller ool SO 90 to min foodGradient
hear fewer than q beacons iculate total else if hear no gradient
el abeacons Calculate total force radient = min+1 random walk
ove nthat dvecton iear fewer than g beacons line has made two circles
«_hear no non-zero walkerGradient St oo--- -
hear no non-zero foodGradient
J

A J

Fig. 2: This figure describes the relationships between the gradient, sweeper,
and adaptive algorithms, and their switches. The “start” arrows indicate how
each algorithm begins. Bold arrows indicate colony-level switches and dotted
arrows indicate individual-level switches.

beacons. These beacons transmit two numbers (one for each gradient), which
the remaining robots can use to navigate. As the swarm expands outward
from the nest, the beacon network expands and creates the nest gradient.
Once the food is found, the food gradient is developed. At that point, robots
can navigate to either location to efficiently return food. (See also [8].)

3.1.1 Local Description

Beacon: Robots acting as beacons are stationary, and broadcast two num-
bers, called nestGradient and foodGradient. They listen for all other bea-
cons in their communication range and record the nestGradient and food-
Gradient of each one. Beacons find the minimum of all nestGradient values
they have received, increment that by one, and take that as their own nest-
Gradient. An analogous procedure is used to calculate foodGradient. These
new values are then broadcast by the beacon. Any beacon directly next to
the nest/food broadcasts a 1 for its nestGradient /foodGradient.

If a beacon has no information about its distance from the food (as happens
early in the run, before the food has been found), it broadcasts 0. The value
of 0 is treated specially—when a beacon hears a 0, it does not include it in
its normal ‘minimum plus one’ calculation.

Walker: Walker robots always attempt to navigate either to the food or the
nest, depending on whether they have food. In either case, a walker measures
the bearing to the minimum gradient value toward the target of interest, and
moves in that direction. If a walker has no information about where it should
go (it can only hear 0), it does a random walk.

Beacon to Walker transition: If a beacon robot can detect more than
4 other beacons, it will become a walker robot with a 20% chance. This

Gradient

Nicholas Hoff, Robert Wood, Radhika Nagpal

Sweeper

beacon
=nestGradient
=foodGradient

pullers

virtual spring connegtion L JUUURRTES -
\’.\ —e== T Yorce vectors™

.né%t '. 0
V) N

stationary robots

O
food

shortest nest-food path
------ path from example location

a b

Fig. 3: Example situations in the gradient algorithm (a) and the sweeper
algorithm (b). Walkers in (a) are not shown to reduce clutter. The gray
contours roughly depict the gradient to the nest.

probabilistic effect is required to prevent several beacons, all of whom can
collectively hear each other, from becoming walkers at exactly the same time
and leaving a hole in the beacon field.

Walker to beacon transition: A walker robot will decide to become a
beacon if it can only detect 1 or 2 other beacons.

3.1.2 Global Behavior

All robots start as walkers clustered around the nest. Some of them will decide
to become beacons immediately because initially, there are no beacons. The
remaining walkers will begin searching for the food. There will be no food-
Gradient (it will all be 0), so they will random walk. As they wander away
from the nest, some will decide to become beacons, and the beacon field
will expand away from the nest. Eventually one of the robots could stumble
across the food, and would then begin transmitting 1 for its foodGradient,
causing the food gradient to form. At this point, any walker can listen to the
beacons near it and know how far it is from the food and how to get there. All
the walkers immediately start moving directly toward the food. As walkers
pick up food, they use the gradient field to bring it to the nest. Figure 3a
illustrates an example snapshot of the gradient algorithm.

3.2 Sweeper Algorithm

A different strategy for search or foraging involves individuals forming a
“search front” and systematically sweeping an area to find an object. Here we

Distributed Colony-Level Algorithm Switching for Robot Swarm Foraging 7

describe an algorithm that uses virtual forces to form a line of robots extend-
ing from the nest that sweeps the world like the hand of a clock. When the
line finds food, some fraction of the robots remain as beacons while others
act as walkers to return the food.

Fundamentally, this strategy creates a 1D structure of robots (roughly a
line), as opposed to the gradient strategy which creates a 2D structure of
robots (roughly a circle). The 1D structure is expected to be able to sweep a
larger area than could be ‘filled in’ with the same number of robots

3.2.1 Local Description

Normal: In the sweeper algorithm, all robots are always transmitting. Each
robot measures the range and bearing to all the other robots in its communi-
cation range. Based on the position of each other robot, it calculates a virtual
force on itself. For each robot detected at relative position 7, this force is

?:ai—bf

Tc

where 7. is the communication range of the robot and a and b are empirically
chosen constants. In other words, the force is similar to what would be expe-
rienced if there were a virtual spring between the robots. The robot sums the
virtual forces from each other robot in its communication range, and moves
in that direction by an amount proportional to the magnitude of the force.
There is one special case: two robots directly next to the nest never move
regardless of the virtual forces on them.

While the robots are calculating forces and moving, they are simultane-
ously using communication to establish a gradient field similar to the one
described in the gradient algorithm. This does not require extra communi-
cation. The data content of the signal encodes the two gradient values, and
range and bearing to the transmitter are used to calculate the virtual forces.

The robot treats the nestGradient exactly as before, updating it using
the min 4+ 1 algorithm. foodGradient is treated slightly differently. Any
time a robot sees a non-zero foodGradient, it temporarily stops executing
the sweeper algorithm and switches to gradient. If the foodGradient returns
to zero, the robot returns to executing the sweeper algorithm.

Puller: Two robots are pre-determined to be “puller” robots. These partic-
ipate in the virtual forces system described above, but they also feel one
additional force. These two robots must use their compasses to measure the
relative bearing to north (the unit vector N), then put a virtual ‘clock’ force

on themselves equal to
- 27t
F.,=cNR|—
~=cNR 7

where R (6) is simply the 2D rotation matrix,

8 Nicholas Hoff, Robert Wood, Radhika Nagpal

R(0) = [25’5 ((g; _czlsn(g)]

f‘i is a force which simply rotates around like the hand of a clock as time
t increases. The parameter c is an empirically chosen magnitude and T sets
the period of the rotation. T is determined by the puller, and can be changed
at any time based on the puller’s nestGradient value.

3.2.2 Global Behavior

When the sweeper algorithm begins, all robots calculate forces and begin
moving appropriately. Initially, repulsive forces cause the swarm to expand
into a tight clump around the nest. The pullers will be forced to the edge of
the pack and a line of robots will form extending from the nest to the pullers.
This line of robots will rotate as the pullers pull it around, sweeping around
the world like the hand of a clock. When the line encounters food, it stops
moving and the swarm returns the food using the gradient algorithm, with
walkers moving along the line of robots already established. When the food
source is exhausted, the forces resume and the line keeps sweeping.

One can imagine that longer lines (with more robots) would need to rotate
slower than shorter lines. Hard-coding the period 7" would require knowing
the number of robots in the swarm, which is not a scalable solution. Instead,
the pullers set T' based on their nestGradient. A higher value for nest-
Gradient indicates a long line, so the puller will choose a larger T'.

Figure 3D illustrates an example snapshot of the sweeper algorithm.

3.3 Adaptive Algorithm

The first two algorithms, gradient and sweeper, each have strengths and weak-
nesses. Gradient operates in a short range but is fast, while sweeper has a
longer range but is much slower. (This is quantified in section 4.) The adaptive
algorithm combines the benefits of these two algorithms, along with random
walk, by trying each one in sequence and choosing the best one for a given
situation. It first tries gradient, which would work well if the food is near
enough to use it. If not, it switches to sweeper to get food further away. If
it still doesn’t find the food, it switches to the last resort — random walk.
Switches between these three algorithms are made in a distributed manner
at the colony level. To accomplish this, a third gradient is included.

3.3.1 Local Description

Robots begin with an algorithm very similar to the gradient algorithm above.
They are split between walker and beacon robots as before, but they maintain

Distributed Colony-Level Algorithm Switching for Robot Swarm Foraging 9

three gradients as opposed to two. The third one measures how far each
beacon is from any walker robot. This requires all walker robots to transmit
a single bit of information indicating their presence and identity as a walker.
The beacons then transmit a 1 for the walkerGradient if they can see a
walker, and min + 1 if they can not see a walker. Other than this, they
execute the gradient algorithm exactly as described above.

To implement adaptive foraging, robots need to explicitly detect when to
change algorithms. If a robot does not see any (non-zero) walkerGradient
for several time steps in a row, it will completely switch algorithms from
gradient to sweeper. Thereafter, if the line of robots has swept the world
twice and still has not found food (as evaluated by the pullers), the pullers
send a signal through the beacon network causing every robot to again switch
algorithms to random walk.

3.3.2 Global Behavior

The swarm will begin executing the gradient algorithm. There are many
walkers at the beginning of the execution, so the values for walkerGradient
are all fairly low. If the swarm finds the food, it returns it as usual, and the
walkerGradient remains irrelevant. If, however, the swarm expands to the
point that all robots have become beacons and the swarm has still not found
the food, then there will be no walkers left. When the last walker becomes a
beacon, suddenly no beacon anywhere in the swarm has information on which
to broadcast a walkerGradient, so all walkerGradient values revert to 0. A
short time later, they all decide nearly-simultaneously to switch algorithms
and begin the sweeper algorithm. From this point on, the swarm proceeds as
normal as if it had just begun the sweeper algorithm, pulling out a line of
robots and sweeping the world. Once this line has swept around the world
twice without finding food, the swarm switches to random walk, which is the
only option left. Random walk does not involve coordination, which relieves
the robots of the requirement of staying near each other. This is the only way
to get food so far away.

4 Performance

These algorithms were tested in a continuous-world multi-agent simulator
(screenshot in figure 1c). An unlimited food source was placed at varying
distances from the nest, with a swarm of 20 robots trying to find and retrieve
it (as diagrammed in figure 4a). Since we are focusing on algorithm switching
and the environmental impact, we chose to experiment with a fixed number
of robots. In the future, we will study scalability of the individual algorithms
more closely.

We assessed the performance of the algorithms using three simple metrics:
(1) whether or not the swarm found the food, (2) how quickly it found the

10 Nicholas Hoff, Robert Wood, Radhika Nagpal

10 m

comm radius { - nest

10m

(a) (b)

Fig. 4: Test setup is shown in figure 4a, drawn to scale. The parameter r
ranges from 1lm to 4m. Figure 4b shows the regions described in section 4.

food, and (3) the rate at which it returned the food to the nest. Each data
point represents an average of 100 runs.

Region-Based Analysis Based on performance (figure 5), we can see that
the world can be divided into four distinct regions, diagrammed in figure 4b.

region description
1 any algorithm works
ro coordination needed, gradient works well
r3 too far for gradient, sweeper works well

r4 too far for sweeper, only random walk works

If the food is inside 71, it is so close to the nest that any algorithm will
find it (figure 5a), find it quickly (figure 5b), and return it quickly (figure 5¢).

ro is the boundary inside which the gradient method works well. It finds
the food, finds it quickly, and returns it quickly. Outside of r,, gradient works
poorly. As the robots expand and form a beacon field, eventually the swarm
will expand to its maximum size and there will be no walkers left to continue
the expansion. If the food is beyond this critical radius (r2), there is no way
for the gradient method to get it. The sweeper algorithm is also capable of
finding the food inside ry, but as seen in figure 5b, takes much more time to
do it. The adaptive algorithm is able to choose the gradient method in this
region, finding food quickly with a high success rate.

In r3, the gradient algorithm is useless, and the sweeper algorithm performs
well, forming a line and sweeping the world out to approximately r3, although
this boundary is less well defined. It finds the food but takes a long time to
do it. In this region, the adaptive algorithm correctly selects sweeper.

Distributed Colony-Level Algorithm Switching for Robot Swarm Foraging 11

Outside 73, even the sweeper algorithm fails because the line of robots can
not reach that far. In ry, the adaptive algorithm switches to random walk.
This works poorly (~ 20% success rate, slow to locate and return food), but
beyond about 3m, it is the only method capable of finding any food at all.

In every region, the adaptive algorithm is able to choose the most appro-
priate foraging method. In r5 it runs the gradient method, in r3 it runs the
sweeper method, and in r4 it runs random walk.

Overall Assessment As an overall assessment of each algorithm, we can
place food in an unknown random location, and measure the performance.
In the table below, “ry, ro, or r3” indicates that the food is placed randomly
anywhere in those three regions, and “whole world” indicates that the food
is randomly placed anywhere. The numbers are averages over all placements.
For example, if the food is randomly placed anywhere and the sweeper algo-
rithm is running, the swarm can be expected to find it 32% of the time, after
an average of 7300 time steps with a standard deviation of 3500 time steps.
(One time step roughly corresponds to one second.)

r1, T, O T'3 whole world
algorithm [success rate|time food found|success rate|time food found
gradient 31% 69 + 34 20% 69 + 34
sweeper 82% 6500 £ 3900 32% 7300 £ 3500
adaptive 86% 5500 + 3700 46% 9200 + 6000

In rq, ro, or r3, the adaptive algorithm finds the food almost as often as
the sweeper algorithm, but does so faster. This is because it is able to take
advantage of the speed of the gradient method when the food is nearby. When
very distant food locations are included (whole world), all algorithms suffer
lower success, but the adaptive algorithm is able to use random walk to at
least achieve some success in a very long time.

5 Algorithm Switching Generalizations

Algorithms other than those presented in this paper could potentially be com-
bined into a single adaptive algorithm using the same method. The critical
requirement is the connectedness of the communication network. This section
will discuss several generalizations we can draw about colony-level algorithm
switching, beyond the specific cases discussed in this paper.

There are two kinds of algorithm switches: individual switches and colony
switches (see figure 2), with two main differences between the types. First,
individual switches are made by a particular robot based on the information
it can perceive, whereas colony-level switches require information which is
distributed throughout the environment and not directly perceivable by ev-
ery robot making the decision. Second, colony-level switches must be nearly
synchronized, whereas individual switches need not be explicitly coordinated.

12

0.8

0.6

04

0.2

fraction of runs which found food

0.0

Nicholas Hoff, Robert Wood, Radhika Nagpal

time food was first found (1000 steps)

ref 5 = =
B A o gradient
g 0O + sweeper
@) +|_| O adaptive
+ 4+ Q I:‘:I
© f
+
O
o ?
o Y mnnon
> > T+ i
nest-food separation (m)
(a)
r— n— r.—]

Ml

f

4 1

i m oA E R R A
s b gl

o -
= - =]

rate of food return (food per 1k time steps)
=
1=

0.001
0

2
nest-food separation (m)

(b)

no -~ -~
1 4
b1
T g ;E qlt '
i
nest-food se(;;a)ration (m)

Fig. 5: Figure 5a shows the success rate of each algorithm. Figure 5b shows
the time at which food was first found. Figure 5c¢ shows the rate at which
food is returned to the nest once it is found. Each point represents an average
of 100 runs, and the error bars indicate one standard deviation. Note the log
scales in the second two plots.

Distributed Colony-Level Algorithm Switching for Robot Swarm Foraging 13

To achieve a colony-level algorithm switch, information must be shared
throughout the swarm, because each robot requires global-level knowledge
in order to decide to switch algorithms. For example, when the adaptive al-
gorithm switches from gradient to sweeper, each robot must be aware that
no walkers are left, but no single robot is capable of perceiving this. This
global information is detected and shared through the beacon network. Be-
cause global information is required for colony-level switches, maintaining the
connectedness of the beacon network is critical for these switches.

We can distinguish three types of information:

information type example from this paper
directly perceivable sense a beacon ahead
directly perceivable by another robot someone found food

only perceivable by swarm as a whole swarm has expanded to max size

Individual switches can be made solely based on information of the first
type. Colony switches require the second and third types, which requires a
beacon network. There is no robot in the swarm with a sensor capable of
detecting the third type of information; it can only be detected by the swarm
as a whole through cooperation. A connected network is critical for detecting
and transmitting this information.

6 Conclusion

We have presented two distributed foraging algorithms which perform best
under different food locations, and a third method in which the swarm as
a whole can choose the best algorithm for the given situation. The gradient
algorithm can return nearby food quickly, and the sweeper algorithm can
find food further away but is much slower. The adaptive algorithm uses the
gradient, sweeper, and random walk methods, detecting in a distributed man-
ner if one has failed and switching to the next. For food in any region of the
world, the adaptive method is able to choose the most appropriate algorithm.
Colony—level algorithm switching requires communication, but can combine
benefits of multiple algorithms and improve overall performance.

There are several possible improvements and expansions planed for the
future, both in hardware and software. Although these algorithms are de-
signed to be scalable, scalability will be tested experimentally. Second, we
will consider methods by which swarms could switch algorithms depending
on dynamic environments (which could require them to switch back to pre-
viously tried algorithms). Finally, we will conduct a hardware study on the
effect of sensor / communication capability on algorithm possibilities and
performance. This study will use the E-Puck robots and IR communication
rings described earlier.

14 Nicholas Hoff, Robert Wood, Radhika Nagpal
References
1. A. Gutierrez et. al. Open E-Puck Range & Bearing Miniaturized Board for Local

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Communication in Swarm Robotics. TCRA, 2009.

Ronald Arkin. Behavior-Based Robotics. MIT Press, 1998.

Tucker Balch and Maria Hybinette. Social potentials for scalable multi-robot forma-
tions. pages 73-80, 2000.

Chris Jones and Maja Mataric. Behavior-Based Coordination in Multi-Robot Systems.
Autonomous Mobile Robots: Sensing, Control, Decision-Making, Applications.

D. Payton, M. Daily, R. Estkowski, M. Howard, and C. Lee. Pheromone Robotics.
Autonomous Robots, 11(3):319-324, 2001.

. E. Barth. A dynamic programming approach to robotic swarm navigation using relay

markers. In Proceedings of the 2003 American Control Conference, 6:5264-5269, 2003.
A. Howard, M. Mataric, and G. Sukhatme. Mobile sensor network deployment using
potential fields: A distributed, scalable solution to the area coverage problem. Sizth
Int. Symposium on Distributed Autonomous Robotics Systems, pages 299-308, 2002.
N. Hoff III, A. Sagoff, R. Wood, and R. Nagpal. Two foraging al-
gorithms for robot swarms using only local communication, 2010.
ftp://ftp.deas.harvard.edu/techreports/tr-2010.html.

J. Svennebring and S. Koenig. Building Terrain-Covering Ant Robots. Autonomous
Robots, 16(3):313-332, 2004.

K. O’Hara, D. Walker, and T. Balch. The GNATs Low-cost Embedded Networks for
Supporting Mobile Robots. pages 277-282, 2005.

Mamei et al. Spreading Pheromones in Everyday Environments via RFID Technolo-
gies. 2nd IEEE Symposium on Swarm Intelligence, 2005.

J. McLurkin. Measuring the accuracy of distributed algorithms on Multi-Robot sys-
tems with dynamic network topologies. 9th International Symposium on Distributed
Autonomous Robotic Systems (DARS), 2008.

J. McLurkin and D. Yamins. Dynamic task assignment in robot swarms. Proceedings
of Robotics: Science and Systems, June, 8, 2005.

James McLurkin. Stupid Robot Tricks: A Behavior-Based Distributed Algorithm Li-
brary for Programming Swarms of Robots. S.M. thesis, MIT, 2004.

F. Mondada, M. Bonani, X. Raemy, J. Pugh, C. Cianci, A. Klaptocz, S. Magnenat, J.-
C. Zufferey, Floreano D., and A. Martinoli. The e-puck, a robot designed for education
in engineering. Proceedings of the 9th Conference on Autonomous Robot Systems and
Competitions, 1(1):59-65, 2009.

S. Nouyan, R. Groff, M. Bonani, F. Mondada, and M. Dorigo. Teamwork in
self-organized robot colonies. IEEE Transactions on FEwolutionary Computation,
13(4):695-711, 2009.

C.A.C. Parker and H. Zhang. Collective unary decision-making by decentralized
multiple-robot systems applied to the task-sequencing problem. Swarm Intelligence,
2009.

R. Vaughan, K. Stoy, G. Sukhatme, and M. Mataric. LOST: Localization-space trails
for robot teams. IEEE Trans. on Robotics and Automation, 18(5):796-812, 2002.

T. Schmickl and K. Crailsheim. Trophallaxis within a robot swarm: Bio-inspired
communication among robots in a swarm. Autonomous Robots, 25:171-188, 2008.
W. Spears, D. Spears, J. Hamann, and R. Heil. Distributed, physics-based control of
swarms of vehicles. Autonomous Robots, 17(2-3):137-162, 2004.

K. Sugawara, T. Kazama, and T. Watanabe. Foraging behavior of interacting robots
with virtual pheromone. TROS 2004, 3:3074-3079, 2004.

S. Yoon, O. Soysal, M. Demirbas, and C. Qiao. Coordinated locomotion of mobile
sensor networks. 5th Annual IEEE Communications Society Conference on Sensor,
Mesh and Ad Hoc Communications and Networks, pages 126-134, 2008.

