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Abstract. The development of flapping-wing micro air vehicles (MAVs) demands
a systematic exploration of the available design space to identify ways in which
the unsteady mechanisms governing flapping-wing flight can best be utilized for
producing optimal thrust or maneuverability. Mimicking the wing kinematics of
biological flight requires examining the potential effects of wing morphology on
flight performance, as wings may be specially adapted for flapping flight. For
example, insect wings passively deform during flight, leading to instantaneous
and potentially unpredictable changes in aerodynamic behavior. Previous studies
have postulated various explanations for insect wing complexity, but there lacks
a systematic approach for experimentally examining the functional significance of
components of wing morphology, and for determining whether or not natural design
principles can or should be used for MAVs. In this work, a novel fabrication process
to create centimeter-scale wings of great complexity is introduced; via this process,
a wing can be fabricated with a large range of desired mechanical and geometric
characteristics. We demonstrate the versatility of the process through the creation
of planar, insect-like wings with biomimetic venation patterns that approximate the
mechanical properties of their natural counterparts under static loads. This process
will provide a platform for studies investigating the effects of wing morphology on
flight dynamics, which may lead to the design of highly maneuverable and efficient
MAVs and insight into the functional morphology of natural wings.
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1. Introduction

In recent years, interest has surged in small-scale autonomous or remotely controlled

aircraft – Micro Air Vehicles (MAVs) – with broad applications in hazardous

environment exploration, reconnaissance, and search and rescue. Small-scale MAVs

aspire to high levels of maneuverability and aerodynamic efficiency; since remarkable

flight performance is achieved by birds, bats, and flying insects at the desired scale,

research efforts have typically focused on a biologically-inspired approach to MAV

design (e.g. [1, 2, 3, 4, 5]).

Within the biologically-inspired design paradigm, much attention has been given

to the challenge of understanding the unsteady mechanisms that govern flapping

flight. In the present work, we focus on insect flight, as insects are at the desired

scale and exhibit simpler control processes than birds and bats, which possess active

musculature along the span of the wing [6]. Though most studies consider wingbeat

kinematics critical to lift generation [7], few address the shape and mechanical

properties of the wings themselves [22, 23]. Unlike aircraft wings, biological wings

are textured, flexible, and thin; wings passively bend and twist appreciably in flight,

leading to instantaneous changes in aerodynamic behavior, as wing shape and fluid

forces are dynamically coupled. It has been suggested that deformation increases lift

production by directing fluid forces in desired directions [8, 9]. Flexible airfoils for

MAVs appear to delay stall at higher angles of attack [29, 30]. Hence biologically

inspired wings may have advantages for flapping MAVs.

Drawing upon these advantages first requires an understanding of the effects of

wing morphology. Naturally occurring wings vary widely in venation, cross-sectional,

and planform geometries, but methods of evaluating the functional consequences of

wing morphology are limited. Detailed measurements of the forces produced by live

insects during flight are not possible with current technology. Dynamically scaled

physical models can provide valuable information about the effects of kinematic

changes on force production [7], but wing flexibility cannot be scaled appropriately

in these models. Numerical models of flapping wings are computationally expensive,

and even under static loads, often fail to quantitatively match empirical behavior

[27, 28, 25].

Instead, effects of particular morphological features can be rapidly tested by

creating artificial, at-scale wings and subjecting them to static or dynamic loads;

unconstrained by natural design space, an artificial wing’s morphological and material

parameters can be carefully manipulated, and their effects on force production

observed. Wing fabrication methods for flapping MAVs exist, but are scarce.

Existing methods are capable of achieving varying levels of structural complexity
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and mechanical stiffness, but often are geometrically limited or sacrifice mechanical

anisotropy – a trait of biological wings – via vein material choice [31, 32, 4]. This

work introduces a novel fabrication process capable of achieving both high structural

complexity and realistic mechanical stiffness, inspired by the following morphological

considerations:

• Planform geometry. The magnitude of induced drag from tip vortices varies

inversely with a wing’s aspect ratio. Hence high aspect ratio wings should be

more efficient than low aspect ratio wings, yet most insects do not have high

aspect ratio wings [6]. Long and slender wings may simply be impractical for

insects that fold their wings, or there may be a compromise between aspect ratio,

kinematics, and power requirements. For a steadily translating wing, maximizing

aspect ratio is optimal, yet for oscillating wings a high aspect ratio increases

the moment of inertia, increasing power requirements and potentially changing

resonance and wingbeat kinematics. Within wing planforms of similar aspect

ratio, shape distribution results in variable performance, and local optima in

wingbeat frequency and shape distribution seem to exist [13, 14].

• Venation. Local variation in material properties is augmented by the pattern

of supporting veins, which ranges from extremely complex to highly reduced

among insect orders [21]. Shape and size vary among and within veins; vein

stiffness tends to decrease spanwise towards the tip and chordwise to the trailing

edge, making the wing more flexible to impact while reducing its moment of

inertia [19]. Consequently, the wing possesses local regions that are especially

deformable or rigid, which contribute to patterns of bending and torsion in flight.

Though flexural stiffness seems to be dominated by the stiffness at the leading

edge and near the wing base, local stiffness may have a significant effect on the

distribution of dynamic pressure stresses [22, 23].

The fabrication process described here is capable of producing lightweight,

complex, centimeter-scale artificial wings, permitting customizable variations in

planform geometry and venation structure and thus enabling experiments to

systematically evaluate the effects of each parameter. The process achieves both the

structural complexity and mechanical stiffness sought by other processes via the use of

unidirectional carbon fiber veins – where the high elastic modulus helps to match the

stiffness of natural, hollow veins [21]. In this paper we briefly illustrate the process’s

potential to create planar wings with complex venation patterns that, when statically

loaded, are comparable to natural wings to a first order. Though dynamic loading is

critical to aerodynamic performance, at this time suitable methods of experimentally

measuring dynamic pressures and/or forces across a flapping insect-sized wing are

unknown, and hence the current work relies on static tests similar to those that have

been performed on real insect wings [22].
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2. Materials and methods

Artificial wings were created with venation patterns derived from a selection of wings

used by Combes and Daniel in their flexural stiffness study [22]. Because we sought

to simply demonstrate the feasibility of the process and approximate mechanical

properties, planar wings (without three-dimensional relief) were created as a first step,

and some designs were simplified. Extreme curvatures were reduced (as discussed

later), complex structures (e.g. cellular venation in Odonata) were removed, and all

veins within a wing were created to uniform width. A planar film of uniform thickness

served as the membrane.

The fabrication process used to create the wings is a combination of Smart Com-

posite Microstructures (SCM) and soft lithography [33, 34]. Poly(dimethysiloxane)

is cast onto a master having the relief structure of the desired vein design, where the

height of the relief structure is the desired vein height (Fig. 1.3). Many techniques are

available to create this master (e.g. photolithography, Figs. 1.1, 1.2). After curing,

the elastomer is peeled off and silanized (Fig. 1.4), producing a wing mold.

A biomimetic wing must be extremely lightweight and requires a flexible

membrane reinforced by a framework of stiff, lightweight veins. Emulating the

material choice of the Harvard University microrobotic fly, veins laser-micromachined

from unidirectional carbon fiber prepreg [2]‡ – chosen for its high elastic modulus –

are inlaid into the mold’s channels (Fig. 1.5), facilitated by the anisotropic properties

of the material. A membrane of polymer thin film§ is aligned on top (Fig. 1.6). We

expect that the high elastic modulus of the carbon fiber (∼300GPa) will dominate

the wing’s structural properties.

The assembly is then cured by vacuum bagging to ensure uniform pressure

distribution during the cure cycle. The cured wing is released from the substrate

(Fig. 1.7), and the superfluous venation is removed (Fig. 1.8). Steps 5-8 may be

iteratively repeated to yield a wing of greater complexity or non-homogeneous vein

geometry (e.g. additional height to individual veins).

The achievable venation curvature is constrained by the mechanical properties

of the carbon fiber. If a curved vein can be spatially described as the deflection of

a beam y(x) from an unloaded state, where x is the position along the beam (Fig.

2), then the upper bound of curvature at position x0 is governed by Euler-Bernoulli

beam theory, where y must satisfy the condition

σ = Eh
d2y

dx2
< σmax (1)

evaluated at x0, where E is Young’s modulus, h is the maximum height from the

neutral axis, and σmax is the tensile strength. This is an upper bound because some

of the stress will inevitably be distributed to the surrounding elastomeric matrix.

‡ M60J or M55J fibers (Toray America) pre-impregnated with resin RS-3C (YLA Inc.)
§ 1.5µm ultra polyester thin film (Chemplex Industries)
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Figure 1. Wing fabrication process, using photolithography to create a positive
relief. (1) A transparency mask of the wing is overlaid onto a Si wafer spin-
coated with photoresist, and exposed to UV light. (2) The unexposed photoresist
is removed with a solvent, and the wafer is silanized. (3) PDMS is poured over the
relief and cured. (4) The PDMS mold is removed from the wafer and silanized. (5)
Laser-micromachined carbon fiber prepreg veins are inlaid into the mold channels.
(6) A membrane is laid on top, and the assembly is cured via a vacuum-bagging
process. (7) The wing is released from the mold, and (8) the superfluous venation
removed.

x

y(x)

Figure 2. Coordinate system for determining the possible deflection of a vein.

3. Discussion

Examples of artificial wings are shown in Fig. 3. To verify that wings made with this

process have mechanical properties comparable to real wings, the artificial wings were

subjected to static loading tests to determine the overall flexural stiffness, EI, in the

chordwise and spanwise directions. Though the wings clearly are not homogenous

beams, calculating the overall flexural stiffness provides a simple measure with which

to compare to existing data on natural wings [22]. Suitable methods of dynamic
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Table 1. Manipulation of stiffness properties via changes in vein geometry

Spanwise EI (N-m2) Chordwise EI (N-m2)

Initial biomimetic wing 5.1 ×10−6± 2.9 ×10−8 2.1 ×10−7 ± 4.8× 10−9

Wing with increased vein height 6.6× 10−6 ± 4.2× 10−8 3.0× 10−7 ± 5.9× 10−9

testing, which may provide more information about wing deformation patterns during

flight, have not been developed for real wings and so are not employed here.

The wings were glued to glass slides with cyanoacrylate glue at the wing base

(for spanwise measurements) or the leading edge (for chordwise measurements). The

slide was lowered by a micrometer stage until it came into contact with a pin mounted

on a balance (Fig. 4). Lowering the slide further applied a point load to the wing;

the deflection was recorded from the micrometer (δ) and the applied force from the

balance (F ). The flexural stiffness EI was calculated as

EI = FL3/3δ, (2)

where L is the distance between wing attachment and the location of the point

load, which was approximately 70% span or chord. This distance was chosen to

be consistent with the experimental setup executed by Combes and Daniel [22].

Deflections were less than or equal to 5% of the beam length L because Eq. (2)

is only applicable for small deflections.

Measurements of spanwise and chordwise stiffness compare well with natural

wings of equivalent span or chord, falling on the same power-law relationship (Fig.

5 top and center). Wings also demonstrate similar spanwise-chordwise anisotropy,

with chordwise EI being 1-2 orders of magnitude smaller than spanwise EI (Fig. 5

bottom). Wings previously used in the Harvard microrobotic fly [2] are substantially

less stiff than natural wings or wings fabricated with the new process.

The mechanical properties can be easily manipulated by adjusting the geometry

or material of a wing. One venation pattern was replicated with a 25% increase in

vein height, yielding increases in EI in both the spanwise and chordwise directions

(Table 1), of 28% and 41%, respectively.

4. Conclusions

The fabrication method outlined here provides a starting point for experiments

investigating the aerodynamic performance of wings with a wide array of user-defined

mechanical properties. As illustrative examples, the artificial wings manufactured

here intentionally have static properties comparable to natural wings to a first
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Figure 3. Examples of biomimetic wings used for mechanical testing.

            X.XXX g

-Y.YYY mm

micrometer stageprecision balance

{deflection 
of Y.YYY mm

wing

Figure 4. Experimental setup. A wing mounted on a glass slide is deflected a
known amount by applying a point load on the wing surface.

approximation, though wings created with this process are by no means constrained

to such a range.

Though we have created planar wings here, previous airfoil and insect studies

indicate that 3D wing relief (e.g. camber or corrugation) may be crucial to force

production, as well as to determining patterns of dynamic bending and torsion.

A steadily translating wing experiences higher lift-to-drag ratios with decreasing

thickness and increasing camber [15]. Because wings often passively deform to

eliminate or reverse camber on the upstroke, one should expect instantaneous changes

in aerodynamic properties as well [16]. Camber also influences torsional rigidity,

producing asymmetric twisting behavior between half-strokes, as noted in butterflies

[17]. Changes in shape due to bending and twisting further affect torsional and

bending behavior [18]. Wing corrugation as seen in dragonflies (Odonata) has been
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Figure 5. Biomimetic wings compared with data from real wings [22]: flexural
stiffness versus span length (top); flexural stiffness versus chord length (center);
anisotropic flexural stiffness in the chordwise and spanwise directions (bottom).

membrane
veins

PDMS mold

cambered support structure

(a)

membrane
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PDMS mold
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Figure 6. Possible fabrication of cambered and/or corrugated wings.
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shown to affect near-field flow and thus may be aerodynamically beneficial [15, 20],

while also resisting spanwise bending [19]. The process described here can be modified

to accommodate camber or corrugated profiles by fitting the PDMS mold into the

desired 3D shape and curing the wing in that configuration (Figs. 6(a), 6(b)). In

addition, spin-coating (or other means of depositing) the polymer membrane onto

the venation pattern would allow greater freedom in cross-sectional profile geometry.

Through an appropriate choice of polymer for the membrane, an etching process

could further manipulate the spatial distribution of stiffness, possibly introducing

highly flexible fold and flexion lines as on biological wings [21].

The question of whether or not artificial wings created by this process will

demonstrate dynamic bending behavior that is also similar to natural wings – and thus

would exploit any aerodynamic benefit that insects may derive from wing deformation

– is beyond the scope of this work. The distribution of wing mass, as well as stiffness,

will affect dynamic bending, and this parameter has not yet been tested in the artificial

wings. However, because mass distribution is correlated with venation pattern in

real wings [6], it is probable that artificial wings with biologically-inspired venation

patterns could be optimized to exhibit dynamic deflections similar to those found in

nature.

5. Future Work

Figure 7. Next-generation Harvard microrobotic fly with biomimetic composite
wings [10].

Current efforts seek an improved process that would enable rapid prototyping of

wings; the process as described requires manual alignment and consequently is worker-

subjective. Possibilities include the use of laser-micromachined, isotropic materials
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for the veins, or filling the mold with shorter, milled carbon fibers and epoxy matrix.

However, because both options would compromise the flexural stiffness and/or the

anisotropy of the wing, efforts are ongoing in this area.

To enhance propulsive efficiency or control, the fabrication process could be

expanded to include embedded micro-actuators into the wing. Active materials would

be able to control deformation of individual wings, or more directly adjust the pressure

distribution over the wing, as with the electrostatic valves in [35]. Insects do not

use active musculature, but such innovations may prove to be superior to biological

steering mechanisms.

Though we have investigated static bending here, the effect of flexural stiffness

on dynamic properties is yet to be elucidated, as is the role of mass distribution.

In the future, mass distribution will be quantified using 3D CAD software or a

strip-weighing technique [13], and dynamic tests will be performed on fabricated

wings attached to an actual transmission as in the Harvard Microbotic Fly (Fig.

7) and flapped through complex trajectories at biologically relevant frequencies in

a horizontal stroke plane [2, 36]. Sensors to measure the rapid, time-varying forces

produced are under development [37]. This will allow us to correlate the measured

forces with the corresponding instantaneous wing shape, as derived from spatial data

captured by high speed videography. Such experiments will provide the basis for

understanding the role of insect wing flexibility in force production, potentially leading

to optimal rules for MAV wing design.
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