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Abstract Most hovering aircraft such as helicopters and
animal-inspired flapping-wing flyers are dynamically unsta-
ble in flight, quickly tumbling in the absence of feedback
control. The addition of feedback loops can stabilize, but
at the cost of additional sensing and actuation components.
This can add expense, weight, and complexity. An alterna-
tive to feedback is the use of passive mechanisms such as
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aerodynamic drag to stabilize attitude. Previous work has
suggested that small aircraft can be stabilized by adding air
dampers above and below the center of mass. We present
flight tests of an insect-scale robot operating under this prin-
ciple. When controlled to a constant altitude, it remains
stably upright while undergoing cyclic attitude oscillations.
To characterize these oscillations,wepresent a nonlinear ana-
lytic model derived from first principles that reproduces the
observed behavior. Using numerical simulation, we analyze
how changing damper size, position, mass, andmidpoint off-
set affect these oscillations, building on previous work that
considered only a single configuration. Our results indicate
that only by increasing damper size can lateral oscillation
amplitude be significantly reduced, at the cost of increased
dampermass.Additionally,we show that as scale diminishes,
the damper size must get relatively larger. This suggests that
smaller damper-equipped robots must operate in low-wind
areas or in boundary-layer flow near surfaces.

Keywords Micro aerial vehicle · Insect-scale vehicle ·
Hovering flight · Stability · Nonlinear dynamics · Limit
cycle

1 Introduction

A number of challenges confront an engineer designing an
autonomous insect-sized aerial vehicle. Machine elements
such as motors, bearings, and airfoils become inefficient as
they get smaller because surface effects become increasingly
important relative to inertial, Newtonian forces (Trimmer
1989). This is because the ratio of surface area to volume
increases with decreasing scale. For example, viscous forces
become increasingly important relative to lift-generating
aerodynamic inertial forces. The smallest flying animals such
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as hummingbirds and flies have adapted to this by continu-
ally flapping their wings to generate lift, rather than gliding
like larger animals (Dudley 2002; Dickinson et al. 1999).
This is because flapping may be more efficient than fixed-
wing gliding for small animals (Wang et al. 2004; Pesavento
and Wang 2009). Other examples include a higher relative
strength per mass of coulomb friction, and decreasing effi-
ciency of the electromagnetic fields in electric motors due to
greater thermal dissipation in small magnetic coils (Trimmer
1989). These changes suggest that actuation, aerodynamics,
and flight control may all require different approaches from
what has been used successfully in larger aircraft.

Despite these challenges, developing aerial insect robots
is motivated by their capability to perform tasks not possible
with other robots. They combine small size, aerial mobil-
ity, reduced human safety hazard, and minimal materials
usage, permitting large numbers to be deployed at low cost.
Applications that could benefit include search and rescue,
robot-assisted agriculture monitoring, chemical detection
and source localization, reconnaissance, and home monitor-
ing.

Previous work in small-scale aerial vehicles has supported
the view that new approaches are needed in actuation and
flight control. The very lightest aerial vehicles powered by
electromagnetic motor, such as the Delfly Micro (De Croon
et al. 2009) or 3D printed ornithopter (Richter and Lipson
2011), have been limited to about 3g and above. Other exam-
ples include a 75g spinning robot modeled after a samara
leaf (Ulrich et al. 2010), a 19g robot resembling a hum-
mingbird (Keennon et al. 2012), as well as early efforts to
make a tiny autonomous helicopter (Kroo and Kunz 2000).
Switching to a rubber band as a power source can allow
mass to diminish even further, reaching as low as 390mg
for a butterfly-inspired ornithopter (Tanaka and Shimoyama
2010). But adding perception for feedback control would
require incorporating an additional electronic power source.
Another alternative to electromagneticmotors for tiny insect-
scale flight was first seriously proposed by Ron Fearing, who
suggested using piezoelectric actuators to drive a “micro-
robotic flying insect” orMFI, that is actuated by tiny flapping
wings (Fearing et al. 2000;Wood et al. 2003). Piezo actuators
are driven by electrostatic forces rather thanmagnetic forces,
whose efficiency and power density do not diminish nearly
as fast with decreasing scale (Trimmer 1989). Subsequent
advances have included a laser-based fabrication process for
insect-scale composite structures that are articulated using
flexure joints (Wood et al. 2008), leading to the first lift-
to-weight ratio greater than one for a fly-sized robot (Wood
2008).With the addition of a second actuator so that thewings
could be independently actuated (Ma et al. 2012), this led to
the first controlled maneuvers in free flight (Ma et al. 2013).

To reduce cost and complexity, particularly as the scale
reduces to that of insects, it is desirable to simplify the

flight apparatus as much as possible. For example, an early
microrobotic flying insect prototype was unable to lift its
own weight because of the complexity of its wing-driving
mechanics (Wood et al. 2003). Constructed to re-create the
lift-producing wing kinematics of hovering insects (Elling-
ton et al. 1996; Dickinson and Götz 1996), it employed two
actuators for each wing to actively control both degrees of
freedom and a sophisticated spherical five-bar linkage. The
result, however, was that much of the power output of the
actuators was used to drive the system away from its natu-
ral dynamics. This led to low efficiency and a system that
was too heavy to lift its own weight. The solution, proposed
later (Wood 2008),was to drastically simplify themechanism
by allowing it to follow its natural dynamics. Each wing’s
angle of attackwas instead allowed to rotate passively around
an elastic flexure joint and only the wing’s stroke angle was
actuated. The result was that the system’s inherent dynamics
produced similar wing motions to those of hovering insects
using much less power and weight, producing the first fly-
sized mechanism able to lift its own weight (Wood 2008).
In a later example of using mechanics to reduce the need
for active feedback, a differential-like mechanism was intro-
duced (Sreetharan andWood2011) that could compensate for
design irregularities. For example, if a portion of one wing
was damaged, this mechanism’s mechanics would cause it to
flap it at a larger amplitude to compensate.

Here we consider another example of using passive
dynamics to simplify the design of insect-sized aerial vehi-
cles. Specifically, we are concerned with the stability of
the robot’s attitude while in flight. When first flown with-
out guide wires, the the robotic fly quickly tumbled to
the ground after lifting off (Pérez-Arancibia et al. 2011).
Like many flying insects, its center of mass hangs below
the wings (Ellington 1984), and this is thought to lead to
dynamic instability about rotational axes (Ristroph et al.
2013; Fuller et al. 2014b). One approach to compensate
for this, and stabilize to an upright orientation, is to use a
sensor in an active feedback loop. In insects, sensors that
are thought to measure rotation for this purpose include the
gyroscopic halteres of flies (Pringle 1948; Ristroph et al.
2010; Dickinson 1999), vibrating antennae in moths (Sane
et al. 2007), and possibly the light-sensing ocelli at the top
of the head (Wilson 1978; Fuller et al. 2014b). In human
engineered systems, gyroscopic feedback has been used to
stabilize unstable systems such as fighter jets (Abzug and
Larrabee 2002) and robot flies (Fuller et al. 2014a). Other
approaches include an external camera-basedmotion-capture
system and reflective markers mounted on the vehicle (Ma
et al. 2013), an ocelli-inspired sensor (Fuller et al. 2014b),
or a magnetometer (Helbling et al. 2014). However, incorpo-
rating any of these sensors implies tradeoffs. For example,
power usage could increase, the possible domains of appli-
cation could be restricted, or, most significantly, the addition
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of sensors could add complexity, increasing the chance of
failure.

Taking inspiration from earlier work described above in
which improved mechanical design improved performance,
we consider here incorporating air dampers to passively sta-
bilize flight. This work is inspired by earlier hovering robots
that were stabilized upright using air dampers placed both
above and below the center of mass, consisting of either
dampers and largewings themselves in the case of theMentor
robot (Zdunich et al. 2007) or air dampers above and below
the center of mass in addition to wings (van Breugel et al.
2008; Richter and Lipson 2011). The basic principle is that
the aerodynamic center of pressure must be located above
the center of mass, causing a self-righting torque that stabi-
lizes the upright orientation during hovering (Fig. 2). Note
that this configuration for stability at hover is opposite to
what is needed for stability in forward flight. For the latter,
the center of mass must be positioned ahead of the center of
aerodynamic pressure (Zdunich et al. 2007). The benefit of
using dampers rather than a sensor-actuator loop for stability
is that this can simplify the flight system.

Like the work reported here, previous work has combined
empirical and physics-basedmodels to understand the behav-
ior of this system. (Zdunich et al. 2007) used an aerodynamic
simulator to model their aircraft to help in design, but little
information is given about the the model. (Richter and Lip-
son 2011) appears to use an entirely empirical design process,
while (van Breugel et al. 2008) shows stability by linearizing
flight dynamics at an operating point with a small (θ = 10◦)
attitude inclination.

This paper aims to provide a more comprehensive char-
acterization of these flight dynamics of damper-equipped
robots using simple analytic models and numerical simu-
lation, along with data from flight tests. This paper extends
the results of an earlier report (Teoh et al. 2012). We start
by deriving a model for the dynamics of a damper-equipped,
insect-sized vehicle from wind tunnel tests (Sect. 3). From
this model, we derived a simplified, linear model, and used
this model to design a prototype robot. We then fabricated
the prototype shown in Fig. 1, which weighed approximately
100 mg. We then flew this robot in a motion capture arena to
control its altitude to a fixed value so that its dynamic behav-
ior could be measured (Sect. 5). The results show that during
all flights, the robot undergoes cyclic oscillations which are
not predicted by the linear model. A more elaborate and
accurate nonlinear model exhibits limit cycle behavior when
simulated numerically (Sect. 6). The nonlinearity arises from
aerodynamic drag on the dampers, which varies quadrati-
cally with airspeed. The paper concludes with an analysis
of how the cyclic behavior of this dynamical system varies
as parameters are changed. Our key contributions are (1) a
demonstration of passive aerodynamic stability on an insect-
scale robot, where simplicity is of paramount importance,

Fig. 1 Image of the robotic fly equipped with 20mm stabilizing air
dampers. The small white spheres attached to the dampers are retrore-
flective markers used to track the vehicle’s motion using external
cameras. A U.S. 10-cent coin is shown for scale

(2) a nonlinear model and analysis of the damper-equipped
robot that reveals how different parameters affect dynamic
behavior.

2 Design considerations

Our analysis indicates that stability at hover using dampers
requires two key elements (Fig. 2):

1. The aerodynamic center of pressure must be above the
center of mass to cause a self-righting torque during lat-
eral motion

2. There must be sufficient rotational drag to prevent over-
rotation

To achieve these ends, the dampers are oriented vertically at
hover to produce aerodynamic dragduring lateralmotion. For
robots of the scale of interest here, i.e. roughly insect-scale,
our results indicate that this requires locating one above and
the other below the center ofmass (CM) to have a sufficiently
large rotational damping. This is consistent with the findings
for hovering robots at larger scales (Zdunich et al. 2007;
van Breugel et al. 2008; Richter and Lipson 2011). Ramifi-
cations for changing damper size and distance are discussed
in Sect. 3.
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Fig. 2 Howdampers provide a restoring torque tomaintain upright sta-
bility. As the vehicle inclines (θ), the thrust force (produced for example
by flapping wings) takes on a lateral component, accelerating the vehi-
cle to the side. As the vehicle moves sideways, aerodynamic drag force
begins to act. If the aerodynamic center of pressure lies above the cen-
ter of mass, then a net torque arises that acts to return the vehicle to an
upright orientation. Additionally, rotational damping is needed to pre-
vent over-rotation. This is achieved by moving the dampers a distance
away from the center of mass to increase the moment-arm

We choose square dampers, rather than, for example, cir-
cular ones, because our structural elements are made from
unidirectional carbon fiber composites arranged in a 0–90–
0◦ layup. Therefore, structural elements not aligned with the
fibers are comparatively weak, suggesting rectilinear shapes
for optimum performance. Rectangular shapes are not as
area-efficient as squares for producing drag.

Our analysis is only concernedwith equally-sizeddampers
at the top and bottom because we believe that unequal-sized
dampers does not represent a path to improved performance.
Differently-sized dampers could be used to move the aerody-
namic center of pressure away from their midpoint. But our
analysis shows that the distance needed between the center
of pressure and CM is very small (1–3 mm) relative to the
distance needed between the dampers (30–100 mm) to add
sufficient rotational drag. So there is little need for additional
means to move the center of pressure further.

3 Model

In this section we describe a model of an insect-sized,
damper-equipped flying robot. The goal of the model is to
predict the behavior of the robot so that guidelines can be
found for damper configuration, such as their size and dis-
tance from the center of mass. Damper design ultimately
involves a number of tradeoffs which include weight, over-
all size, fragility, and susceptibility to wind gusts. Because
of this, we do not attempt to specify an optimal design, but
rather attempt to provide the reader with design guidelines
to help choose the right balance.

3.1 Aerodynamic drag

We start by considering how drag on a vertically-oriented
flat-plate damper, as depicted in Fig. 1, acts on the robot as it
moves laterally through the air (Fig. 2). For lateral motions
on the order of 1 m/s (Ma et al. 2013), the Reynold’s number
Re = ρvl/μ is 1300 for a damper with area A = 400 mm2

(length l = 20 mm), where ρ = 1.2 kg/m3 is the density
of air near sea level and μ = 18 × 10−6 Ns/m2 is the vis-
cosity of air. Therefore, at the scale and speeds of interest,
approximately those of insects, drag in this flow regime is
dominated by inertial, rather than viscous forces. A model
for drag in this regime is that it varies quadratically with
airspeed according to

f = ρACdv|v|, (1)

where v is the velocity of the impinging flow, A is the area of
the damper, and Cd , known as the drag coefficient, accounts
for shape- and flow-dependent effects (Hoerner 1965). The
v|v| component respects the squared dependence on drag but
preserves the correct sign.

To confirm the validity of the model and find the cor-
rect Cd for our damper shape, we measured drag for our
damper designs for wind speeds ranging from 0.0 to 1.0 m/s
in a wind tunnel (Engineering Laboratory Design, Lake City,
MN, USA). The wind speed was monitored by a hot-wire
anemometer and regulated with a proportional-integral-
derivative (PID) controller to achieve precise control. This
feedback loopprovided a steady-state accuracy of±0.01m/s.
We mounted the damper at the end of a 30cm moment
arm attached to a precision six-axis force–torque sensor
(Nano17 Titanium, ATI Industrial Automation, Apex, NC,
USA). Torque readings from the sensor were measured after
the wind velocity had reached a steady state and converted to
force by dividing by the length of the moment arm. This pro-
vided a resolution of 27µN(2.8 mg)with a rangeof±30mN.
The mounting arm was also subject to aerodynamic drag, so
its effect wasmeasured separately beforehand and subtracted
out.

We measured forces on three square damper sizes, 15, 20
and30mm.Weadditionally consider smaller 10mmdampers
in this work, but the test shape for that size produced forces
too small to be measured with sufficient precision using our
sensor. Accordingly for that size we extrapolated our results,
which are consistent with well-established fluid drag rela-
tions (Hoerner 1965). Force measurements sizes are shown
in Fig. 3. A least-squares fit of Eq. (1) to the data found
that Cd = 0.43 (R2 = 0.99). This compares to an esti-
mate of Cd = 0.58 measured for a square flat plate for
Re � 1000 (Hoerner 1965) (p. 3–15). Note that the drag
on a flat plate is reduced by approximately 16% if a second
plate is attached perpendicular to it on the downstream side
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l

Fig. 3 Drag force on passive air dampers mounted transverse to the
flow of air in a wind tunnel. (Inset) As seen from above, air flow in the
tunned moved perpendicularly to the cross-shaped damper. The drag
force follows the prediction of Eq. (1), varying quadratically with wind
speed and linearly with damper area. A least-squares fit to the data gives
an estimated drag coefficient Cd in Eq. (1); predicted drag forces with
this factor are shown in grey

that “splits” eddies in the downstream wake (Hoerner 1965)
(p. 3–7), predicting a reduced Cd of 0.5, which is close to
our estimate. The cross-shaped arrangement of the dampers
shown in Fig. 1 consists of the same perpendicular two-plate
configuration. The measured Cd also compares closely to
the value of 0.44 that was estimated by fitting free-flight
data (Chirarattananon and Wood 2013).

We also considered the drag acting on the thruster mech-
anism for the specific case of flapping wings. As above, we
performed wind tunnel tests on a flapping-wing prototype.
We found that aerodynamic drag is almost perfectly propor-
tional to velocity, as shown in Fig. 4, following fd = −bdv,
where bd is the slope coefficient, or, equivalently, the damp-
ing constant and v is the velocity through the fluid. In that
figure it is also shown that if the vehicle is rotated 90◦ about its
vertical (z-) axis so that the wind is blowing laterally across it
rather than head-on, drag also approximates a nearly identi-
cal linear function. We do not have an aerodynamic model to
explain why lateral drag is roughly equal to frontal drag, but
remark that it simplifies analysis because both pitch and roll
motions can therefore be modeled by the same dynamics.

3.2 Rigid body dynamics

We describe the dynamics of the body of the vehicle using
the following equations of motion:

θ̇ = W(θ)ω, (2)
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Fig. 4 Drag arising fromflappingwings is roughly linearwith airspeed
and is roughly equal for motion along either the x or y axis. (Inset)
Wind impinging from head-on (along x-axis) and laterally (y-axis).
The linear approximation for both directions was fitted by least-squares
and is shown by a thick line

J ω̇ = τ − ω × Jω, (3)

ṗ = R(θ) v (4)

m v̇ = f − ω × m v, (5)

where θ ∈ SO(3) is the vehicle’s attitude and is represented
by an array of three Euler Angles θ � [θ1, θ2, θ3]T ; v ∈ R

3

is the velocity of the vehicle’s center of mass (CM); ω ∈ R
3

is its angular velocity about the CM ; τ ∈ R
3 is the sum of

all torques or moments applied to the body, primarily aero-
dynamic forces and control torques generated by the wings;
f ∈ R

3 is the sum of external forces acting on the CM ;
m ∈ R

1 is the mass; and J is the vehicle’s moment of inertia.
The position p is given in inertial, Earth-fixed coordinates;
all other vectors are expressed in body-attached coordinates.
With this parameterization, the moment of inertia becomes a
matrix J ∈ R

3×3, as does the rotation matrix R(θ) ∈ SO(3).
Euler Angles have singularities at extreme attitudes but the
representation is convenient to describe motion in the neigh-
borhood of a certain attitude. We parameterize Euler Angles
in zyx-order: the attitude is obtained by first rotating by an
angle θ3 (yaw) around the body z-axis, then by θ2 (pitch)
around the new body y-axis, and then by θ1 (roll) around the
new body x-axis. Therefore, the rotationmatrix, which trans-
forms body-attached coordinates to Earth-fixed coordinates,
takes the form

R =
⎡
⎣
cθ2cθ3, sθ1sθ2cθ3 − sθ3cθ1, sθ1sθ3 + sθ2cθ1cθ3
sθ3cθ2, sθ1sθ2sθ3 + cθ1cθ3, sθ2sθ3cθ1 − sθ1cθ3
−sθ2, sθ1cθ2, cθ1cθ2

⎤
⎦ ,

where we have used the shorthand c for cos and s for sin. The
quantity W(θ) ∈ R

3×3 is a matrix that relates the angular
velocity ω to the rate of change in Euler Angles θ̇ so that
Eq. (2), written in terms of coordinates, is given by:
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⎡
⎣

θ̇1
θ̇2
θ̇3

⎤
⎦ =

⎡
⎣
1 sin θ1 tan θ2 cos θ1 tan θ2
0 cos θ1 − sin θ1
0 sin θ1/ cos θ2 cos θ1/ cos θ2

⎤
⎦

⎡
⎣

ω1

ω2

ω3

⎤
⎦ . (6)

Torques τ are all derived from forces f and are written as
the cross product of a position vector d relative to the CM
and f according to

τ = d × f . (7)

3.2.1 Inertial and gravitational masses

Bodies undergoing acceleration in a fluid move a portion of
the fluid with them, which can be modeled as an additional
mass known as “fluidic added mass” (Sane and Dickinson
2001; Blevins 2015). In one-dimensional form, the force
balance including added mass can be expressed simply as
additional mass in the system:

Σ f = (m + ma) v̇,

where ma is the added mass. The amount of added mass
depends on the shape and cross-sectional area of the moving
body exposed to the fluid flow. In (Blevins 2015) (Table6.7)
are tabulated added mass models for different shapes. For
damper motions in the body x- and y-directions, the cube
shape in that table is closest to the square-shaped dampers
considered in this report. Note that added mass does not
depend on the thickness of an object, so a square plate mov-
ing perpendicular to the flow and a cube moving with its face
perpendicular to the flow are expected to have equivalent
added mass. For a cube with a side length of l, the relation is

ma = 0.64ρl3, (8)

where ρ is the density of the fluid flow. Using ρ = 1.2 kg/m3

(the density of air at sea level), this gives an estimate of
ma = 6.1 mg for a damper of length l = 20 mm. Compared
to themass of that damper itself, 16 mg, addedmass therefore
represents a non-negligible component of a damper’s inertia.

We remark that our added mass model does not take into
account the effect of downwash flow from thewings. Gravish
et al. (2015) reports flow velocitymeasurements of the down-
wash from a flapping wing of our design by particle image
velocimetry (PIV) and hot-wire anemometer. It shows that
above thewings, average flow is negligibly small,<0.01m/s.
Below the wings, the flow is larger, but also likely negligible
because it flows outward. It averages approximately 0.1m/s
at a distance of ≈20 mm (the typical distance to the bottom
damper considered here), compared to a root mean squared
value of 0.22m/s for the dampers themselves in the flight
experiments in Sect. 4. But peak flow is concentrated near the
tip of the wing and flows outward away from the dampers at

an angle approximately 30◦ away from the negative z-axis,
so little of this flow reaches them. Nonetheless we believe
a more thorough analysis of this specific phenomenon, such
as by computational fluid dynamics simulation, could yield
a more accurate model of flight dynamics.

To incorporate the effect of added mass on our model,
we note that added mass affects inertia but not gravity.
Accordingly, we make a distinction between gravitational
and inertial masses. For the full 3D case, we definem ∈ R

1 to
be the gravitational mass, and introducemI ∈ R

3×3, a diago-
nal matrix that compactly represents the direction-dependent
inertia that is the result of fluidic added mass.

With inertial mass, the force balance Eq. (5) is rewritten so
that momentum is described as the product of inertial mass
and velocity:

mI v̇ = Σ f − ω × (mI v),

and we note that the gravitational force acts on the gravita-
tional mass m according to

f g = RT [0, 0, −mg]T .

The total gravitational mass is

m = mt + m1 + m2,

where mt is the mass of the thrusting or flapping mechanism
andm1 andm2 are themasses of the top and bottom dampers,
respectively. We have neglected the mass of the damper sup-
ports because it is very small (Sect. 4.1). The inertial mass is
given by a diagonal matrix

mI = diag
(
m + max , m + may, m

)
,

where max = may are the fluidic added masses for the body
x- and y-axis directions. We model added mass along the
z-direction as negligible because of the very small cross-
sectional area exposed to flow in that direction, and neglect
off-diagonal terms.

The moment of inertia is affected by fluidic added mass
as well. The robot—and its added mass—is symmetric about
all three of its orthogonal coordinate axes, so its moment of
inertia takes the form J = diag(Jxx , Jyy, Jzz). About the
body x- and y-axes, the moment of inertia is approximately
the same. Assuming that the thruster’s moment of inertia is
Jt , the total moment of inertia about the CM for these two
axes is (using the parallel axis theorem):

J = Jt+mtd
2
t + J1+(m1+ma) d

2
1 + J2 + (m2 + ma) d

2
2 ,

where dt is the distance from the CM to the center of mass
of the thruster mechanism (Fig. 5). We model the square,
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Fig. 5 Diagram of forces acting on the robot (red) and parameters
(black). The robot has mass m whose center is at the CM (Center of
Mass). The CM moves with velocity v, given in body-attached coor-
dinates. Body-frame and world-frame coordinate systems are shown as
dashed arrows in inset at lower left, which are rotated relative to each
other by the vehicle’s inclination angle θ (top). The robot is subject to
a thrust force ft produced by wings or propellors, gravitational force
mg, and aerodynamic drag acting on the two dampers f1 and f2 and
the thruster fd . The locations of the top and bottom dampers relative to
the CM are d1 and d2, respectively. Note that d1 > 0 and d2 < 0. The
midpoint of the pair of dampers (shown as a tick mark on main beam
connecting dampers, also known as the aerodynamic center of pres-
sure) is located dm from the CM . The center mass of the lift-generating
thruster is at dt from the CM . The velocities of these two dampers in
body-attached coordinates are v1 and v2. Each square damper has area
A and dimension l given by its length (Color figure online)

cross-shaped dampers as cubes, for which there is a simple
relation for the moment inertia about their center of mass of,
J = 1

6ml2.
Note that our analysis assumes that the inertial and grav-

itational centers of masses are coincident for notational
simplicity. This is because in practice their relative dis-
placement is negligible (≈0.2 mm). But the effect could be
incorporated by adding an additional gravity-induced torque.

3.2.2 Simplified planar dynamics model

Wewill show that the relevant dynamics can be simplified to
a much lower order system that considers only motion in the
plane. This will facilitate analysis. To do so, we use a number
of assumptions that hold for the case considered here:

1. ω3, the angular velocity about the body z- or vertical axis
is small;

2. θ1 and θ2 are small;
3. the inertia matrix is diagonal; and
4. v3 is small.

The consequence of assumption 1 can be seen by writing Eq.
(3) in component form,

Jxx ω̇1 = τ1 − (Jzz − Jyy)ω2ω3

Jyyω̇2 = τ2 − (Jxx − Jzz)ω1ω3

Jzzω̇3 = τ3 − (Jyy − Jxx )ω1ω2.

This reduces to J ω̇ = τ around the first and second axis
for for small ω3. The consequence of assumption 2 is that
W in Eq. (6) reduces to the identity matrix. And because of
assumptions 1 and 2, the terms appearing in the cross prod-
uct ω × m v in Eq. (5) are small for the first two axes, as
can be shown by writing out the cross product terms. The
equation therefore reduces to mI v̇ = f for the first and
second components of v. The result of these realistic simpli-
fying assumptions is that the θ2–v1 (pitch-heave) dynamics
are decoupled from the (θ1 to v2) roll-swaydynamics, and can
be considered independently. For pitch-heave heave dynam-
ics, the equations of motion can therefore be written as

θ̇ = ω

J ω̇ = Στ

ṗ = v cos(θ)

mI v̇ = Σ f. (9)

A similar relation holds for roll-sway dynamics.
As an additional test to confirm that this simplification to

a 2D planar model represented an accurate representation of
the full 3D dynamics, we compared our 2D nonlinear simula-
tion of these dynamics (used in the analyses of Sect. 6) against
a second simulator that computed the full three-dimensional
rigid-bodymotion of a damper-equipped system. The second
simulation was written in a different language, MATLAB
instead of python, to minimize duplicate errors in the simu-
lation code. The prediction of the simplified model (Eq. 9)
agreed with the full simulation to within 10% for all three
state variables for general conditions of nonzero vertical
motion (breaking assumption 4), while both pitch and roll
dynamics were excited (breaking assumption 2), as well as
for when ω3 �= 0 (breaking assumption 1). This indicates
that the model with simplifying assumptions given above
is an adequate representation of the full three-dimensional
behavior of this system.

3.2.3 Forces

The total force including damper and thruster drag in the
body x-direction is Σ f = f1 + f2 + fd + fg , where fg is
the force due to gravity. The gravity force is for the planar
dynamics case is

fg = mg sin θ. (10)

Now we consider how drag on the dampers is induced by
motion of the vehicle. Figure5 shows a diagram of the vehi-
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cle’s damper configuration and forces acting on it. Flat-plate
theory indicates that the aerodynamic force on the dampers is
almost entirely due to the component of flowperpendicular to
its surface (Hoerner 1965). This can be written in vector for-
mat as f = ρACdv⊥|v⊥|, where f is the drag force vector
and v⊥ is the component of the flow velocity v that is per-
pendicular to the surface of the damper. This simplifies our
analysis, allowing the velocity (along the x-axis) to be writ-
ten as v1⊥ = d1ω+v for the top damper and v2⊥ = d2ω+v

for the bottom damper, where ω is the angular velocity of
the vehicle about its CM along its body y-axis and v is its
velocity along its x-axis. Note that d1 > 0 and d2 < 0.

We assume aerodynamic drag is equal across the damper
and that it acts at its center. For this approximation to hold,
the distance from the damper to the vehicle’s center of mass
must be much larger than its length l, which generally holds
here. Below, we revisit this assumption using data taken from
flights and simulation to show that flow due to rotational
motions about the center of each damper is much lower than
that due to translational motions and motions around the of
the entire vehicle. Aerodynamic forces on the top and bottom
damper are thus approximated by

f1 = −ρl2Cd (d1ω + v) |d1ω + v| and

f2 = −ρl2Cd (d2ω + v) |d2ω + v| , (11)

respectively, where the damper area A = l2.
As in the case of the dampers, the drag resulting from

vehicle motion acting on the wings is thus

fd = −bd(ddω + v), (12)

where dd is the distance from the CM to the center of aero-
dynamic drag pressure acting on the wings (or propellor or
other thrustingmechanism) and bd is its damping coefficient.

3.2.4 Torques

The total torque on the vehicle about its y-axis is Στ =
τ1 + τ2 + τd + τg + τp. The quantity τp is a torque dis-
turbance perturbation we consider the effect of later. Such a
perturbation could be caused by for example asymmetry in
the flapping system that causes one wing to flap with greater
force than the other. Torques along the y-axis resulting from
forces can be found using Eq. (7) and are given by

τ1 = d1 f1

τ2 = d2 f2

τd = dd fd

τg = 0. (13)

Note that the torque due to gravity is zero because gravity
acts at the center of mass CM .

Note that the dampers also induce torque as they rotate
about their centers, but this effect is negligible. In the flight
experiments in Sect. 4, the root mean square velocity of
the midpoint of the dampers themselves was approximately
0.22 m/s, while the outer edge of each damper moves with
a root mean squared velocity of only 0.05m/s relative to
its center. With a velocity-squared dependence on drag, this
additional torque therefore represents at most a 20× factor
less than the torque induced by rotation and translation of the
entire vehicle, and so we neglect this contribution.

3.3 Linearized model

We first considered a linearization of the dynamics of the
damper-equipped robot (Eqs. 9–13), taken around θ = ω =
v = 0. To linearize damper drag to have the form f =
−bv, we took a least-squares linear regression on drag force
data (Fig. 3) for airspeeds up to 1.0 m/s. This gave damping
coefficients for 20mm dampers of b = 1.8 × 10−4 Ns/m.
Similarly, for the wings, which behave almost linearly in
both frontal and lateral flow, bd = 2.0×10−4 Ns/m.We also
take the small-angle approximation of sin θ ≈ θ .

To provide insight into how different parameters affect
stability, we simplified the analysis by choosing parameters
that allowconvenient termcancellations.Wechoose identical
top and bottom dampers (b1 = b2 = b) equidistant from the
CM(d1 = −d2 = d/2). In this case, we rely on drag on
the wings to move the center of aerodynamic pressure above
the CM . Writing out all of the terms in Eq. (9), neglecting
position because it does not act on the system’s dynamics,
gives

θ̇ = ω

ω̇ = 1

J

[(
−bd2/2 − bdd

2
d

)
ω − bdddv

]

v̇ = 1

m
[mgθ + −bdddω + (−2b − bd) v]

To assess the stability of this system, we cast it in the form
of a state-space system according to q̇ = Aq, where the
state vector is q = [θ, ω, v]T and A is the so-called state-
transitionmatrix. The dynamics of this system are stable if all
of the eigenvalues of A have negative real parts. The Routh–
Hurwitz stability criterion can be used to determine this by
analyzing the characteristic equation det(A−λI ) = 0,which
is a polynomial of the form a3λ3 + a2λ2 + a1λ1 + a0 = 0.
It states that stability is assured if and only if all ak > 0 and
a2a1 > a3a0. All of the ak > 0 by inspection since mass
and inertia must be positive and non-zero, so the stability
criterion reduces to
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2b

Jm2

[
(2b + bd) d

2/4 + bdd
2
d

]

×
[
(2b + bd) J +

(
bdd

2
d + bd2/2

)
m

]

> bdddg. (14)

Assuming bd and dd are fixed by the flapping mechanism,
this equation indicates that there are twoclear paths to achieve
stability for the linearized dynamics. First, the criterion can
be satisfied if the factor b/Jm2 is made large enough, which
can be achieved by increasing b by increasing damper area.
Second, note that inside the left pair of brackets of Eq. (14),
we can neglect bdd2d since (2b + bd) d2/4 � bdd2d because
the distance from the dampers to theCM is much larger than
from the wings to the CM (d/2 � dd ). This indicates that
increasing d will also bring the system closer to stability.

Based this linear analysis, we chose to equip our experi-
mental robot platform with l = 20 mm dampers, separated
by d = 40 mm, with dd = 3.9 mm. The robot is shown
in Fig. 1. This configuration represented a good compromise
between manufacturability and flight weight (larger dampers
are more difficult to make and heavier) and robust stability.

4 Design and fabrication

Because our focus was on attitude stability, we performed
flight tests on a simple flappingmechanism consisting of only
a single power actuator for simplicity, basedon thedesign that
demonstrated vertical flight control in (Pérez-Arancibia et al.
2011). This design cannot actuate in the roll direction, so its
lateral position is not under feedback control and is allowed
to drift slowly. The rate is slow enough that sufficient data
can nevertheless be collected about its performance.

Dampers were fabricated out of a frame of 80 µ m thick
unidirectional carbon fiber, cured from prepreg out of three
plies arranged at 0◦–90◦–0◦ orientations andmachined using
a 355nm diode-pumped solid state laser (Wood et al. 2008;
Whitney et al. 2011). Each damper consists of two interlock-
ing surfaces that form a cross. The cross is fixed on both ends
by caps that lock the dampers with respect to each other. The
aerodynamic surface of the damper is made from a sandwich
of two sheets of 1.5 µm polyester. Before sandwiching, the
polyester is stress relieved at its glass transition temperature
150 ◦C for 1min twice. Next, the sandwich is put in between
a layup of four layers of Teflon on either side to limit adhe-
sion, a 3 mil steel sheet and a kapton/silicone/kapton layer
on each side of the sandwich to distribute forces evenly. The
layup is put under 3.6 MPa of pressure and heated to 150 ◦C
for 15min and is left to cool under pressure. Under these con-
ditions, the polyester membranes self-adhere, encapsulating
the carbon fiber frame between them. Once cooled, the out-
line of the damper is laser cut to release the damper from the

sandwich. Some additional detail can be found in (Teoh et al.
2012).

4.1 Physical dimensions of damper supports

We briefly address the practical matter of translating theo-
retical parameters into physical dimensions of parts on the
robot. The motivation is driven by how, in practice, as the
location of the midpoint between the dampers varies rela-
tive to the mass of the thrusting mechanism, the location of
the CM varies, depending on the relative masses of different
components. Therefore there is not a straightforward relation
between part dimensions and physical locations d relative to
the CM .

To find these dimensions, we introduce a second coor-
dinate system defined relative to the center of mass of the
thrusting or flappingmechanism, with positions denoted by r
parameters. Coordinates in this r frame represent the dimen-
sions of physical parts, whereas d parameters are positions
relative to center of mass CM of the entire damper-equipped
vehicle. Our aim is to, given component masses mt ,m1, and
m2, and desired damper distances d1 and d2 or the position
of their midpoint dm , compute r1, and r2, or the position of
their midpoint rm , which specify these positions relative to
the thruster’s center of mass.

Define rm to be the distance from the thruster’s center
of mass to the midpoint between the dampers. In the CM
coordinate framewe define dm as the position of themidpoint
of the dampers, and dt as the distance to the center of mass
of the thruster, as shown in Fig. 5. Then by geometry,

dt = dm − rm . (15)

We then use the definition of the center of mass to write

mI1d1 + mI2d2 + mtdt = 0. (16)

Note that we neglect the effect of mass of the structure to
support the damper at a distance from the robot because con-
stitutes a negligible fraction of the total mass and moment of
inertia of the vehicle. For example, a 10mm extension has a
mass of only 1 mg, or about 1% of the robot. Then, substitut-
ing Eqs. (15) into (16), we find that rm = mI dm/mt . Then,
defining the distance between dampers as d = d1 − d2, we
have that r1 = d/2 + rm and r2 = −d/2 + rm . Similarly,
it can be shown that d1 = d/2 + dm and d2 = −d/2 + dm .
Note that we usemI to denote inertialmass (see Sect. 3.2.1).

5 Flight tests

To test the operation of the dampers in flight,we implemented
a feedback system to regulate its altitude to a constant value.
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We used a motion capture system consisting of a set of exter-
nal cameras (Vicon T040-series, Oxford, UK). The cameras’
position and orientation are calibrated with respect to each
other, allowing them to triangulate the position of reflective
markers attached to the vehicle. During each frame, each
camera emits a flash of infrared light from light emitting
diodes. An imager records the location of reflections. Four
cameras were positioned approximately 60cm apart, close
enough to detect five 1.5mm spherical retroreflective mark-
ersweighing approximately 3mg each attached to the vehicle
(B & L Engineering, Santa Ana, CA, USA) over a volume
approximately 45cm across. The cameras take images at a
frame rate of 500 Hz.

We used a desktop computer running XPC-target (a real-
time operating system, MathWorks, Natick, MA) to perform
control computations. This computer received pose infor-
mation from the motion capture system over serial RS-232
connection. The feedback latency of this system is approxi-
mately 10–20 ms (Ma et al. 2013). The computer computed
the response of a proportional-derivative (PD) controller at at
10 kHz and produced analog output voltages using a digital-
to-analog board. These signals were then routed through a
high-voltage amplifier (Trek, Lockport, NY, USA) and con-
nected to the piezo actuator through a thin bundle of four
51-gauge copper wires. The mass of the wires, approxi-
mately 5 mg, is much less than that of the vehicle. In
experiments, the actuators were driven with an amplitude
of 230V peak-to-peak. Before flying, we found the reso-
nant frequency of the wing-actuator system by comparing
the flapping amplitude measured by high speed video at
different frequencies, choosing the frequency of maximum
amplitude, which was approximately 105 Hz (Finio et al.
2011).

The altitude controller used a P gain of Kp = 900 V/m
and D gain of Kd = 210 V/sm and was tuned based on
simulations of a simple model of the robotic fly’s vertical
dynamics consisting of its mass, neglecting air drag. To this
signal was added a baseline feedforward signal of 216V
that was found to be the minimum signal to achieve take-
off. The derivative term was added to damp the dynamics
and add phase lead. To minimize damage to the actua-
tor and transmission, we limited the peak-to-peak voltage
amplitude to an interval that ranged from 200 to 256 V.
This controller was able to stabilize the robot’s altitude
with small error as shown in Fig. 6, and could regulate alti-
tude at a number of different altitude setpoints as shown in
Fig. 7.

In Fig. 8, plots of angular velocity versus attitude are given
for the θ1 and θ̇1 for the three different trials shown in Fig. 7.

The results show the following. First, the attitude of the
vehicle remains in a generally upright orientation, indi-
cating that the dampers are successfully able to keep the
vehicle from inverting and crashing, as occurs without the
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Fig. 6 High-speedvideocomposite of altitude control of flapping-wing
vehicle stabilized by air dampers. In this flight, the vehicle was con-
trolled at an altitude of 100 mm (top). Here the robotic fly accelerates
vertically until reaching an altitude setpoint, then begins to drift lat-
erally. During the trial, we recorded the altitude measured by visual
tracking (bottom, left axis), the P and D amplitude control commands,
and piezoelectric actuator voltage during this trial run (bottom, right
axis)

dampers (Pérez-Arancibia et al. 2011; Fuller et al. 2014b).
Secondly, the attitude appears to undergo an oscillation. In
all three flight tests, the attitude varies with an amplitude
of approximately 20◦–30◦ during the course of the flight,
with angular velocity and attitude tracing out roughly circu-
lar motions in a phase-space plot (Fig. 8).
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Fig. 7 Flight altitude during three flight tests recorded by motion cap-
ture cameras. The small error in the three cases is likely due to the
steady-state error that can be manifested in a PD controllers, which do
not have an integral term
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Fig. 8 Limit cycle plot of θ1 (attitude) versus ω1 (angular velocity) for
the three three trials shown in Fig. 7. A dot denotes the start of a trial

6 Nonlinear model analysis

The linearmodel given in 3.3was useful for providing a base-
line set of design parameters, but the the attitude oscillations
shown in Fig. 8 suggest that the robot does not eventually
reach a stable equilibrium point as suggested by the linear
analysis given in Sect. 3.3. The quadratic dependence on drag
of our dampers (Sect. 3.1) is an inherently nonlinear phe-
nomenon: at a lateral velocity in the neighborhood of zero,
the drag is nearly zero.

To better understand the dynamics of this system it was
necessary to perform a nonlinear analysis. Our first aim was
to cast the equations of motion (Eqs. 9–13) into a form that
permitted analytic treatment. But we were unable to dis-
till the system’s behavior into anything simpler. The authors
welcome suggestions by researchers who may be aware of
more advanced techniques in nonlinear analysis. Of partic-
ular interest would be formulations that are invariant with
respect to scale.

Fig. 9 Limit cycle for dampers. (Top) Regardless of initial state (shown
as dots), trajectories of the system asymptotically become entrained in a
cyclic pattern known as a “limit cycle.”Note that the dynamics are three-
dimensional, so paths can cross on a two-dimensional plot. (bottom) A
single trajectory (shown in red above) is shown in terms of the three
state variables plus the output position (Color figure online)

Accordingly, for this reportwe resorted to numerical simu-
lation.We wrote the simulation in Python (version 3.5) using
the Jupyter notebook and Scipy (version 0.12). Numerical
integration was performed using a fixed-step integrator. The
time step was chosen to be dt = 2 ms so that the simulation
ran quickly while yielding predictions within 0.1% of those
with an asymptotically smaller time step (0.01 ms). Figures9
and 10 show the behavior of the system for parameters given
in Table1. We measured rt , the distance from the thruster’s
center of mass to the center of drag of the wings (approxi-
mated by their leading edge,where themajority of the surface
area is) by balancing a damper-free flapping mechanism on
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Fig. 10 Limit cycle behavior of the damper-equipped robot (Fig. 9)
showing position and attitude snapshots at 0.1 s intervals. The position
p of the CM (grey line and large dots) is plotted along the x-axis and
evolves with time plotted on the y-axis

Table 1 Parameters used in the numeric simulation of the robot model
in Figs. 9 and 10

Symbol Name Value Units

Cd Aerodynamic drag
coefficient

0.43 N/A

bd Aerodynamic damping
coefficient, wings

2.0 × 10−4 N s/m

l Damper length 20 mm

d Distance between dampers 40 mm

dm Damper midpoint position
relative to CM

−3 mm

m1, m2 Mass of 20mm damper 16 mg

mt Mass of thruster mechanism 80 mg

Jt Moment of inertia of
thruster mechanism

1.5 × 10−9 kg m2

rt Position of wings relative to
thruster center of mass

7 mm

τp Torque perturbation
disturbance

0.1 × 10−6 N m

a sharp edge under a microscope. The moment of inertia of
the flapping mechanism, Jt , was estimated using a computer
aided design (CAD) model. The simulation of this system
with these parameters resembles that observed in the three
flight tests (Fig. 8).

The simulation indicates that, regardless of initial con-
dition, the dynamics of the vehicle become entrained into a
cyclic oscillation known as a “limit cycle”with a finite ampli-
tude. Only in the limit of infinite damper length l or distance
d does the oscillation magnitude reduce to zero.

Table 2 Parameters used for scaling damper mass and wing drag

Symbol Name Value Units

km Damper mass scaling 0.04 kg/m2

kt Wing drag scaling factor 1.25× 104 N s/(m kg)

6.1 Performance evaluation

In this section we use our simulation to analyze the system’s
behavior and provide design guidelines for hovering aerial
vehicles. Recognizing that there are different goals to design,
we used two criteria to evaluate the flight performance: (1)
the size of oscillations, measured by amplitude of position
and attitude oscillations, and (2) the degree to which the con-
figuration was robust to a torque perturbation. The size of
position oscillations is relevant when considering the size of
confined spaces to fly through; the size of attitude oscillations
may be important when considering onboard sensors such as
cameras or magnetometers. For criterion (2), wemeasured to
what degree the robot was affected by a non-zero disturbance
torque τp, such as is caused by manufacturing irregularity
in the flapping mechanism. A nonzero disturbance torque
causes the vehicle to tilt, inducing a lateral velocity. A mea-
sure for the resistance of the vehicle to such disturbances is
the size of the resulting lateral velocity. We measured this
disturbance-induced lateral velocity by simulation, calculat-
ing the mean lateral velocity by averaging over a single cycle
after it had reached a limit cycle or a steady-state inclina-
tion.

6.1.1 Wings-included model

We performed an analysis in which the drag effect of wings
for our specific vehicle was incorporated. For this analysis,
we relaxed the assumption of equidistant dampers (d1 = d2)
used in the linear analysis of Sect. 3.3 to see what, if any,
effect this has on the dynamics. To account for scaling effects,
we additionally incorporated two scaling terms. The first was
how the mass of the dampers scales with their length l. We
assumed the mass of the dampers scales with their area1

1 A detailed analysis suggests that if instead the damper is considered
to be made of beams that must support the load of a impact landing,
quadratic scaling is reasonable. We consider the damper support struc-
ture as a simply-supported beam. We neglect the mass of the polyester
layer because it has similar density (≈15 kg/m3) to carbon fiber but
a much lower thickness, at 3 µ m compared to 80 µ m for the carbon
fiber composite. Assume the maximum force the beam is expected
to support is F∗, caused by, for example, crash landings. Then the
greatest moment applied to the beam of length l occurs at its base, and
is equal to M∗ = F∗l. Suppose the beam has a width w and thickness t
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Fig. 11 Wings-included model: how varying different parameters
affects the amplitude of oscillations. (Top left) Diagram of parameters
that are varied. (Topmiddle) Position amplitude remains constant (Black
squares) as damper distance increases, though attitude oscillations are
reduced. (Inset) This occurs because, as damper distance increases,
the time of period of each oscillation increases. (Top right) Varying
the damper midpoint position has little effect on position amplitude.

(Bottom left) Increasing damper size reduces position oscillation, but
this comes at the expense of increased weight. (Bottom right) Increas-
ing thruster mass increases oscillation amplitude. (All) The effect of a
torque disturbance. Increasing the damper midpoint position in the pos-
itive body z-direction or increasing damper size reduces the effect of
torque disturbances. (Grey triangles) Other perturbations have a smaller
effect

Footnote 1 continued
(≈80 µm for our material). Tensile stress inside the beam at its base is
σ = M∗ y

I , where I = wt3
12 is the moment of inertia of the rectangular

beam and y is the distance from its centerline. Then maximum stress
σ ∗ in the material occurs at the top and bottom of the beam, and is equal
to3 σ ∗ = M∗t/2

I .
Our interest is in a scaling law that, for a constant load F∗ and mate-
rial strength σ ∗, gives the mass of the damper. Substituting the above
equations into each other, we find that, for constant t (that is, a fixed fab-
rication process), the width of the beam must be w = 6 F∗

σ ∗ l
t2
. The mass

of a single beam is m = ρlwt , where ρ is the density of the material.

Substituting, we find that the mass must be m = 6ρ F∗
σ ∗ l2

t , or, written
more succinctly,m = kml2 for all other terms kept constant. To find the
value of km , rather than compute these terms, we simply calibrate it to
a damper design that, after a few iterations, has been found to support

according to m = kml2. For a damper of length l = 20 mm,
we measured the damper mass to be 16mg using a precision
scale. Using this value gives km = 0.04 kg/m2 (Table2). We
additionally incorporated corresponding changes to moment
of inertia into our simulation. Second, air drag on the wings
varies with the amount of thrust produced: more thrust
requires larger wings. To account for this, we introduce the
wing thrust drag scaling factor kt . We assumed that wing
drag scales linearly with the flapping-wing thruster mass,

Footnote 1 continued
the necessary loads. In this case, the damper consists of many separate
beams, all of which are of the same thickness of carbon fiber and must
support similar loads.
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neglecting the mass of the dampers, giving bt = ktmt . We
estimated its value by assuming a thruster mass of zero has
zero drag, and that our flapping-wing thruster mass and drag
factor were measured to have the values given in Table1.
This gives kt = 1.25 × 104 N s/(m kg) (Table2).

Figure11 shows how varying each of the parameters
affects the amplitude of position oscillations. For each case,
a single parameter is varied while all others are fixed at
values given by Table1. The results show that, for the wings-
included case, all of the parameters that we varied have little
effect on the amplitude of position oscillations. It is hard
to provide an explanation of this phenomenology because
it is a result of how the location of the aerodynamic center
of pressure varies with airspeed: air drag on the wings acts
in proportion to airspeed while drag on the dampers acts in
proportion to the square of airspeed. This shows the need for
numerical simulation. As observed in the insets, these pertur-
bations dohave an effect on the attitude oscillation amplitude,
however. The reason this is not mutually exclusive is that the
time period of the oscillations varies as well, which is not
visible in the plots.

We also considered the effect of a small torque distur-
bance τp (Table1). Increasing the damper midpoint position
in the positive body z-direction and decreasing thruster mass
increase the effect of torque disturbances. Other perturba-
tions have a smaller effect.

Based on these results, we then inverted the problem, ask-
ing what parameters result in a desired oscillation amplitude.
Given that there does not appear to be ameans to alter position
oscillations, we instead performed the analysis for attitude
oscillations. We chose a target amplitude of 30◦. As damper
length l, distance d, and thruster mass mt have the largest,
effect, we chose to focus on those. We chose to find that
damper distance d that results in the target desired oscillation
amplitude for a given mt and l. We performed a numeri-
cal optimization to search for the optimal value, minimizing
the squared error using a Levenberg–Marquardt optimizer
(scipy.optimize.lstsq in Python’s Scipy package).
Figure12 shows the result of the analysis. The behavior
resembles an exponential. To fit to an exponential function
we used a multilinear least-squares exponential regression
using the scipy.optimize.curve_fit command.
The resulting relation giving the necessary damper length
to achieve the desired amplitude of position oscillations is is
given by

d = 0.20m0.55
t l−1.0,

where mt is given in kg and l and d are given in m. This is
shown by thin lines in the figure, showing good agreement.
We observe that the necessary distance varies as the square
root of mass and inversely with the size of the dampers. This

Fig. 12 Damper distances necessary to achieve a 30◦ oscillation ampli-
tude. Plots in this figure include the effect of aerodynamic drag on the
wings. Shaded area represents variability when amplitude is varied by
±1◦. For cases in which the model gives a damper distance that is too
small to be physically possible because of its size and the size of the
flapping mechanism, data is not plotted

Table 3 Parameters that are different from Table1 in the simulation of
the wing-free damper model

Symbol Name Value Units

dm Damper midpoint position 1.5 mm

Jt Thruster moment of inertia 0 kg m2

bd Thruster damping drag coefficient 0 N s/m

indicates that a quadrupling of vehicle mass requires dou-
bling the damper distance or the damper length.

6.1.2 Wing-free model

Finally, to better understand basic scaling effects, we consid-
ered the behavior of a system that did not have the damping
effect of the flapping wings. This is a simpler system with
fewer assumptions, and it may be a better representation for
other mechanisms of thrust generation such as propellors or
rocket propulsion. These forms of thrust do not have the large
moving surface area and therefore drag of flapping wings.
Table3 gives those parameters that are different from those
used in Table1.

The results show that position oscillation amplitude does
not vary with damper distance d or midpoint offset dm , but
that increasing damper length l and reducing thruster mass
mt can reduce these oscillations. As can be seen in the insets
of Fig. 13, perturbations that do not have an effect on position
amplitude such as damper distance d and damper midpoint
position dm do change attitude oscillation amplitude. As
above, this is possible because these perturbations vary the
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θ

v mt

dm
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Fig. 13 Wing-freemodel: how varying different parameters affects the
amplitude of oscillations. (Top left) Diagram of parameters that are var-
ied. (Top middle) Position amplitude remains constant (black squares)
as damper distance increases, though attitude oscillations are reduced.
(Inset) This occurs because, as damper distance increases, the time of
period of each oscillation increases. (Top right) Varying the damper
midpoint position has little effect on position amplitude. (Bottom left)

Increasing damper size reduces position oscillation, but this comes at the
expense of increased weight. (Bottom right) Increasing thruster mass
increases oscillation amplitude. (All) The effect of a torque disturbance.
Increasing the dampermidpoint position in the positive body z-direction
or increasingdamper size reduces the effect of torque disturbances (Grey
triangles). Other perturbations have a smaller effect

time period of the oscillations. For the torque disturbance
response,we found that increasing the dampermidpoint posi-
tion in the positive body z-direction or increasing damper size
reduces the effect. Other perturbations have a smaller effect.
This confirms the intuition that while larger dampers have
the desirable effect of both reducing oscillation amplitude
and increasing disturbance rejection, this comes at the cost
of greater mass.

As above, we then considered how to choose parameters
to reach a target attitude oscillation amplitude. Removing
the effect of the wings permitted smaller oscillations, so we
chose a target of a 15◦ amplitude. The resulting data and
model were found as above in Sect. 6.1.1, with the results

shown in Fig. 14. The relation giving the necessary damper
distance to achieve 15◦ oscillations is given by

d = 0.11m0.19
t l−0.28,

where mt is given in kg and l and d are given in m. This
shows that without the wings, damper distance has a much
stronger effect to reduce attitude oscillations, and damper
distance does not scale with mass as quickly.

For the wing-free case, parameter variations had a much
larger effect on position oscillations. Accordingly, this
enabled an optimization to achieve a target position ampli-
tude. Minimizing the size of these oscillations is of interest
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Fig. 14 Design guidelines for a damper-equipped robot without wing
drag. (Left) The damper distance d necessary to achieve an attitude
oscillation amplitude of 15◦ for different thrustermassesmt and damper
length l. The shaded area represents variability as the target amplitude
is varied by ±1◦. (Right) The damper length l necessary to achieve a

position oscillation amplitude of 6.25×d for different damper distances
and thruster masses. Shaded area represents the variability as the ampli-
tude target is varied by 1 mm. Data is not plotted for cases in which
the model gives a damper distance that is too small to be physically
possible or a damper length below 5 mm

for applications in confined spaces. But because damper dis-
tance d has no effect on position amplitude (Fig. 13), we
instead optimized over the damper length l, and choosing a
target amplitude of 25cm for the case of d = 40 mm. The
relation giving the necessary damper length to achieve the
desired amplitude of position oscillations is is given by

l = 7.1m0.64
t d0.046.

This shows that there is a very weak dependence on the dis-
tance between dampers as indicated by the small exponent
on d as expected from Fig. 13.

We then performed an analysis aimed at finding scale-
invariant properties.Between the twocandidate length scales,
l and d, the damper distance d is larger, so we chose it as the
driving characteristic. For this analysis, we then fixed the
position oscillation amplitude target to be proportional to the
size of the vehicle, according to 6.25d. This corresponds to
a 25cm amplitude for a d = 40 mm vehicle. The analysis is
shown in Fig. 14 and the resulting relation is given by

l = 0.11m0.56
t d−1.0. (17)

This shows that as the damper distance increases (with
other parameters held constant), the oscillation amplitude
increases roughly proportion (because orbit size was fixed in
proportion to d). Therefore, there are two routes to compen-
sating for an increase in thrustermass: either increase damper
distance for little gain in weight but an increase in oscilla-

tions, or increase damper length to maintain oscillation size
at the cost of increased weight.

If we postulate a size scale for the thruster L such that
its mass scales as L3, then substituting L3 for mt in Eq. (17)
(ignoring the constant scaling factor),we can see that tomain-
tain the same-sized position oscillations, the damper’s length
must vary by L .17, and therefore the damper’s mass by L .34.
This indicates that the damper size and mass become propor-
tionally smaller as the thruster size increases. Conversely, the
dampers get relatively larger as scale reduces.

7 Conclusions

In this workwe have presented an analysis of the aerodynam-
ics of a damper-equipped hovering aerial vehicle at insect
scale and used it to propose sizing guidelines for a range
of vehicle sizes. We were able to use dampers to stabilize
the attitude of an insect-sized, flapping wing vehicle during
hovering flight. Without dampers or another form of feed-
back, this vehicle quickly crashed to the ground because
of dynamic instability. The basic principle of operation is
a coupled lateral-rotational dynamical system in which there
is inherent self-righting. Our work builds on earlier demon-
strations of the principle on larger vehicles to reveal how
the dynamics of a damper-equipped vehicle vary as vehicle
configuration changes.

We draw a parallel between our damper robot and how
insects are thought stabilize their upright orientation. They
are thought to combine self-righting through drag on the
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wings with rotational damping induced by sensory feedback
or fibrous appendages (Ristroph et al. 2013). Rotation sens-
ing is thought to be mediated by the gyroscopic halteres
in flies (Dickinson et al. 1999), and either vibrating anten-
nae (Sane et al. 2007) or torsional forces in the wings in
moths (Eberle et al. 2015). While it is not known how other
animals such as honeybees sense rotation, flight tests on a
robotic fly have been used to hypothesize that their light-
sensing ocelli could perform this role (Fuller et al. 2014b).

The benefit of passive dampers is that the design of the
vehicle can bemademuch simpler because it does not require
an active sense-react feedback loop to maintain stability.
Additionally, any sensor used to stabilize the dynamics of
small robots must operate with a high bandwidth because of
the fast dynamics at this scale (Åström and Murray 2008).
This requires greater power usage. In contrast, an air-damper-
equipped vehicle could forego such fast sensors, permitting
a much slower feedback loop and sensors and requiring less
power.

The benefit of the simplicity of dampers come with some
costs. First, our results indicate that periodic oscillations
cannot be avoided in this design. Periodic positional excur-
sions with an amplitude of 20cm are unavoidable, as are
rotational oscillations of 15–30◦. Secondly, the large surface
area exposed to the wind by dampers may restrict flight in
windy conditions, suggesting that dampers may find their
best application indoors. Our results indicate that wind sus-
ceptibility can be somewhat mitigated by reducing damper
area, at the cost of larger position and attitude excursions
(Figs. 13, 11, bottom left). Conversely, our results indicate
that only by increasing damper size can lateral position oscil-
lation amplitude be significantly reduced. This comes at the
cost of increased damper mass.

We also draw some conclusions about how dampers scale
with robot size. Our results indicate that there are two routes
to compensating for an increase in thruster mass: either
increase damper distance for little gain in weight but an
increase in position oscillation amplitude, or increase damper
size to maintain oscillation size at the cost of increased
weight. We also show that as robot scale L decreases (and its
mass by L3), the damper mass scales downward very slowly
as L .34 for a fixed-size position amplitude. This indicates that
at small scales, the dampers must be comparatively large.
Our analysis does not account for viscous friction, how-
ever, which grows with diminishing scale, so future work
will investigate how this comes into play at the very smallest
scales where fluid dynamics are better modeled by Stokes’
flow.

Future work will attempt to perform flight control on
damper-equipped robots. Our torque perturbation analysis
indicates that a small torque can in all cases produce a lateral
velocity, which could be used for flight control. We sug-
gest that a reasonable first application could consist of a

very simple sensor suite such as a temperature sensor and
a magnetometer to sense orientation. Using only occasional
sampling, it could perform a bacteria-inspired biased random
walk toward sources of heat by sampling the gradient (Mac-
nab and Koshland 1972).
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