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Abstract

This paper presents an analysis of the major me-
chanical component (the thorax) of the micromechan-
ical flying insect (MFI), a centimeter sized aerial ve-
hicle currently in development at UC Berkeley. We
present a description of the kinematics of the mecha-
nism which converts piezoelectric actuation into com-
plex 3D wing motion. A complete non-linear modeling
of the system based on the Lagrangian energy tech-
nique is presented. A design methodology is presented
in order to achieve optimal matching conditions. Two
kinds of sensors which are presently utilized on the
MFI are described. Fxperimental results are presented
which validate some of the modeled non-linear aspects
of the mechanism.

1 Introduction

Micro-aerial flying mechanisms are an attractive
form of locomotion because of their many potential
applications such as search and rescue, exploration,
sensor distribution, reconnaissance, etc. made possi-
ble by their very small size and high maneuverabil-
ity. Early work on microrobotic flight was done by
Shimoyama et al [11], while different aspects and ap-
proaches to micro areal flight have been pursued by
various groups ([3]-[8]). Fundamental work by Dick-
inson et al [4] showed that the complex high speed
motion of the insect wings is responsible for creating
unsteady aerodynamic effects which account for the
exceptional lift and agility exhibited by insects. A
biomimetic approach was subsequently undertaken by
Fearing et al [5] to design a wing transmission which
had the same degrees of freedom as the actual insect.
Early designs for the mechanism involved a fan-fold
wing technique. Recently, the design was modified
to enable the use of rigid wings to achieve the same
motion [14]. This technique avoids some of the aero-
dynamic and fabrication problems involved with the
original design. Initial attempts at modeling the dy-
namics of the differential [14] assumed a lumped model

*This work was funded by ONR MURI N00014-98-1-0671,
DARPA and NSF KDI ECS 9873474.

approach in which the wing motion was separated into
rotations about uncoupled axes.

This paper describes a detailed dynamic model of
the thorax, a design methodology for the optimal de-
sign of the thorax and the sensors which are currently
utilized on the MFI.

2 Mechanism Description

The MFT utilizes piezoelectric actuators which de-
flect under the action of an applied electric field [12].
The overall transmission from the actuators to the
wing can be broken up into 2 distinct parts. The first
stage consists of a planar fourbar which converts small
translational input from the piezo into large angular
motion at the output. (typically about 60° for 3 mm).

The next stage of the mechanism consists of the
wing differential mechanism which converts 2 inde-
pendent angular inputs into a coupled flapping and
rotation of the wing.
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Figure 1: Kinematic representation of the wing differ-
ential mechanism.

The wing differential is essentially a spatial five-bar
mechanism (with topology RSRRR) with 2 degrees of
freedom. It can be considered a variation of the spher-
ical fourbar mechanism described in [9], where one of



the intersecting revolute joints is replaced by a spher-
ical joint. The various links are labeled in Fig. 1. The
fourbars drive the links 1 and 4 directly. The wing
itself forms link 2 of the mechanism (in practice, link
2 is made of a steel beam with the wing glued onto
it.) When the fourbars move in phase, then the whole
differential simply rotates about the global flapping
axis. This is defined as pure flapping. When the 2
fourbars move out of phase, i.e 01 # 65, then the wing
also rotates about link 2 through an angle 1 defined
as rotation in addition to some flapping. This is de-
scribed precisely in the next section.

Notation
01,05 Fourbar actuations
o ( := 61 — 03 ) phase difference between the 2
spars
10) Deviation of wing from stroke plane

P Rotation angle of the wing

3 Kinematics

In this section, we derive the forward and inverse
kinematics of the wing differential mechanism. It can
be shown that the wing rotation 1, and the stroke
plane deviation ¢, depend on the phase difference «
as

Y = sin"'(Asina) (1)
¢ = sin? 71
/A2 + cos2

~ tan~! (Coiw) G

In the following discussion, the ratio I/d, denoted by
A, is referred to as the differential transmission ratio.
It is evident from eqn 1 that a larger transmission ra-
tio means that for a constant phase difference «, we
obtain a larger rotation v. We are interested in trans-
mission ratios with values > 1, due to factors such
as dynamic balancing (which is explained later) and
also getting the desired kinematic trajectories from
the wing. Fig.2(a) shows the variation of ¢ with « for
A between 1 and 2.5. We see that the phase differ-
ence required to generate the same rotation decreases
with increasing A. Furthermore, the amount of non-
linearity in the transmission also increases with .

where

3.1 Inverse kinematics of the Spherical
Joint

As shown in Fig. 1, the spherical joint consists of
3 flexures in parallel in order to achieve independent
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Figure 2: Kinematics of the Wing Differential.

rotations about 3 axes. In order to find out the equiv-
alent stiffness of the wing differential we will need to
find out the angles through which each of these flex-
ures rotate for a given angle of attack. Fig. 2(b) shows
the variation of the joints in the spherical joint with
phase difference for A = 2. It shows that 3 joint con-
tributes quite a lot more to the overall stiffness of the
spherical joint than the v; and 2 joints.

4 Dynamics

We use the Euler-Lagrange formalization to derive
the dynamics of the system. In order to do this, the
various energy terms in the mechanism have to be cal-
culated in terms of the state variables.

KE = KEyctuators T K Efour-bars
+K Espars + KEWing (4)
PE = PEyctuators T PEgifferential ()

The kinematics described in section 3 enable the
formulation of the various terms above in terms of
05, ,0, and ¢. Therefore defining {02,a}T, as the
state variables and transforming variables, we get the
following differential equation of motion (details of the
derivation can be found in [1]):

w5 oo [0 ][0 ]

6‘2 92 92
1,7 < \2
§mw,2(a) _ 1
R B IO
where
e Mass M =

ms,1 + My,2 M 12 — M. 2
w, w,
+mfb,1 + Meacet,1

Myw,12 — My 2

Ms 2 +Mgp2
+mact,2 + Maw,2
FMay,1 — 2y, 12



The main contribution to the inertia matrix
comes from the wing and appears as mq,,1, My,2
and m,, 12 which are the inertia components of
the wing lamina reflected through the differen-
tial transmission. These depend non-linearly on
both the differential transmission ratio, A and the
phase difference, a.

Moy 1 2 1-— cfp -2
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where the dependence of ¢ and ¢ on A and «
are given in equations 1-2 and Jy,, J.,, J;. are
the fixed inertia components of the wing. The
equation above simplifies considerably about the
nominal position of the differential i.e for o = 0.
For a = 0, we have:

Maw,1 1 0 0 wa
May,2 =10 X 0 Jos (9)
Moy, 12 0 0 A Iz

The terms my 1 /2 in eqn. 7 are the inertias of links
1 and 4 of the differential. Currently, these spars
are made out of 12.5 micron thick stainless steel
folded into square and triangular beams 1 mm
on each side using the methods described in [10].
For the current design, the length of the spars (i.e
links 1 and 3 in Fig. 1) is fixed at 2 mm and the
differential transmission ratio is varied by chang-
ing the spacing between them. Consequently, the
spar inertias are fixed at 2 x 1072 and 3 x 1072
kg - m? respectively.

Also, the terms myy, 1/ in eqn. 7 are the inertias
of the two fourbars which transmit motion from
the PZTs to the wing differential. Their design is
also fixed (details in [1]) and consequently, their
inertias are fixed at approximately 1.7 x 10~ 12kg-

m?2 each.

Finally the terms mgc. ; in eqn. 7 is the equivalent
rotational inertia of the PZT reflected about the
wing hinge. Assuming a linear fourbar transmis-
sion, we have

Mact,i = mPZT,i/N?, i=1,2 (10)
where Ny is the fourbar transmission and
mpzr,1/2 is the linear inertia of the PZT mea-
sured at the point of actuation.

Damping The aerodynamic forces felt by an in-
sect wing during its motion are quite non-linear

and time-varying [4]. However, for the sake of
analysis, we use a linear damping matrix to ap-
proximate them. It should be noted that the lin-
ear damping term is calculated so that it overes-
timates the drag force felt on the wing at every
instant except when it achieves the peak velocity
[14].

bo bia — b2
b = 11
big — b2 ba+ b1 — 2b12 (11)

The most dominant term of the damping ma-
trix is b; and determines the @ of the wing in
a simple flapping mode. Preliminary measure-
ments of the structural b yielded an estimate of
7 x 107 Nms/rad.

Stiffness The stiffness matrix of the thorax
mechanism is given by

B ks1+ kq —kq
K = —kq ks2 + kq (12)

where, kg, called the differential stiffness is de-
fined as

_ l()P Edifferential (13)

d .
« Oa

The differential stiffness arises from the flexures
which make up the joints of the mechanism.
Each flexure can be considered a simple rotational
spring whose stiffness depends on the dimensions
of the flexure such as length, thickness and width
and also the material of the flexure (see [7] for a
complete treatment of flexures). We presently use
6.3 micron thick polyester flexures (E = 2.5GPa).
Changing the flexure lengths provides the abil-
ity to change the differential stiffness for a given
transmission ratio. Fig. 3 shows the variation of
kq with A and « for a typical wing differential
where the major flexures are made of 6.3 micron
thick polyester flexures 175 microns long and 1
mm wide. We see that kg increases with the A
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Figure 3: Variation of differential stiffness with A and
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as is to be expected. Also, the non-linearity in
kq increases sharply with A. (A linear differen-
tial would have had a constant stiffness for all «.)
k1 and ks 2 in equation 12 represent the actuator
stiffness reflected about the wing hinge.

kact,i

ks,i = N—?, 1= 1,2 (14)

where Ny is the fourbar transmission ratio and
kqct,; is the linear stiffness of the actuator mea-
sured at the point of actuation.

5 Design Synthesis

Once the differential equations are set up, we want
to design the differential mechanism to get good be-
havior from the mechanism. As a first step, we set
up a metric for evaluating the performance of a differ-
ential equation. We then try to design a mechanism
which will satisfy this differential equation.

5.1 Performance Metric

Consider the linearized frequency response of (6) for
some typical values of kg, Jyz, Jz», etc shown in Fig. 4.
Aj; represents the amplitude of motion of spar 1 (link
1 in Fig. 1) when only the first actuator is driven with
the resonance at fi. Similarly Aso represents the am-
plitude of motion of spar 2 (link 4 in Fig. 1) with
actuator 2 driven. Ajs represents the cross-coupling.
It represents the motion of spar 2 when actuator 1 is
driven. A large A;> means that the actuators begin
to interfere with each other, making it harder to drive
them out of phase. The frequency response, while not
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Figure 4: Performance of a typical 2 input 2 output
274 order system.

what we desire serves to illustrate some of the charac-
teristics we design for:

1. Symmetry The transfer functions from 7 to 6
should have the same resonant frequency as the
transfer function from 72 to 62, i.e f; = fo. This
will ensure that we can drive the two spars in

resonance at the same frequency. This condition
implies the following condition on the system pa-

rameters:
ks,l + kd ks,2 + kd {15)
M1 + Mo Mg 2 + Mo +my — 2mig

Furthermore, the amplitude of motion at reso-
nance should be about the same for both spars,
i.e Aj; = Ass, which gives the condition that:

by = by + b1 — 2b1o (16)

2. Small cross-coupling It’s desirable to be able to
drive the two spars independently. This will en-
sure that we are able to generate sufficient phase
differences and correspondingly sufficient angles
of attack. For small cross-coupling at DC, the
off-diagonal terms in (12) should be small which
implies:

kd < ks,l; ks,Q (17)

For small cross-coupling at AC, the off-diagonal
terms in the mass and damping matrices should
be small, which implies:

miza —My =~ 0 (18)
b12 - b2

%
=
N

These matching conditions, (15-19) can be expanded
to:

ka < ks,l

_ Mo, 1 — 2mw,2
woZowE = e @)
S,l - 5,2 b2 — b12
My 1 = 2My 12

The design effort now involves choosing the various
parameters of the mechanism in order to approach the
matching conditions given above. The parameters in
the construction of the wing mechanism are:

1. Fourbar Transmission Ratio, N;: The four-
bar transmission ratio effects the reflected stiff-
ness of the actuator (10) and also the DC response
of the mechanism. The resonant frequency de-
creases linearly with the transmission ratio while
the DC motion increases linearly with the trans-
mission ratio.

2. Differential Transmission Ratio, \: )\ af-
fects how the constant wing inertia terms
[Jza, Juz, J22] are mapped to the wing hinge (8).
The differential transmission ratio also effects the
reflected stiffness of the differential mechanism.
(Fig. 3).



3. Flexure Design: The flexures in the wing dif-
ferential have to be designed for a low parallel
stiffness while avoiding resonant modes due to se-
rial compliance in undesirable directions, which
might occur if the flexures are made too long.

4. Wing Shape: The wing shape is not a single
parameter. It includes information about how the
mass is distributed over the wing area. In our case
the shape can be completely specified by the three
inertia parameters, Jy., J,, and J,,.

5.2 Fabrication

Fig. 5(a) shows the wing differential fabricated to
final scale. The top spar can be seen to be slightly
leading the bottom spar causing a positive angle of
attack. The fabrication, while retaining the kinemat-
ics previously defined, is significantly different than
the schematic (Fig. 1) due to considerations of flexure
width optimization, and ease of assembly and align-
ment.

The main difficulties were encountered in the fab-
rication process were firstly, that the flexures cur-
rently employed in the MFI are made of 6.3 micron
polyester. It was found that the lowest differential
stiffness achieved with this material is still more than
50% of the actuator stiffness. This is not quite low
enough to get the desired uncoupling. Secondly, the
PZT actuator used on the structure turned out to
have a stiffness of 113 N/m. This was about 50% less
than the anticipated actuator stiffness. In future ver-
sions, a lower fourbar transmission ratio will be used
to counter this effect. The lower stiffness resulted in
a decreased resonance and increased coupling at reso-
nance.

These factors lead to a differential which exhibited
more coupling than is optimal. From the point of view
of validating the model, however, the present thorax is
better since a differential with more coupling exhibits
rather more “interesting” behavior than a totally un-
coupled differential and is much harder to predict.
Section 6 describes some of the experiments which
were undertaken to test the validity of the model.
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Figure 5: Photo of MFI wing differential mechanism.

Fig. 5(b) shows the wing used in the current MFI.
This wing consists of a face sheet made of 7 micron
thick polyimide with 200 micron diameter x 10 micron
thick polyimide tubes laid across it. (See [1] for fabri-
cation details). The primary purpose of the tubes is to
provide the necessary stiffness to the wing while also
enhancing the inertial properties of the differential.
Table 1 is a brief comparison of the current wing with
a calliphora wing (since the calliphora weighs nearly
as much as the target MFIL.) The main advantages of
this wing were the ease of fabrication and more im-
portantly the highly repeatable and accurate manner
in which the required low inertia could be obtained.

| | MFI wing | Calliphora wing |
Weight 0.48 mg 1.0 mg
Moment of Inertia 21 mg - mm? 22 mg - mm?
Moment of Area 1100 mm* 900 mm?
(Flapping)

Table 1: Comparison of the MFI wing with a Cal-
liphora wing.

6 Experimental Results

Linearizing (6) about an operating point yields a
transfer function matrix which relates the two input
torques 7 and 72 to the two spar angles 6; and 6,.

BBl

=: G(s)

(21)

The effect of non-linearity in the model is to change
the transfer function above for different operating
points.

The experimental results presented here involved
measurement of the frequency response of the sys-
tem for small amplitudes about two different operating
points.

1. « = 07 — 05 = 0°. The differential stiffness is at
a minimum when the two spars are in phase and
we expect the most uncoupling in this situation.
Fig. 6(a) shows the predicted frequency response
for this operating point.

2. o = 01 — 05 = 25°. At this phase difference, the
differential stiffness is almost 3 times its nominal
value. Fig. 6(b) shows the predicted frequency re-
sponse for this operating point. The major differ-
ence between the two is that the second resonance
moves from 150 Hz to more than 220 Hz.
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Figure 6: Predicted frequency response of the wing
differential.

6.1 Strain Gage Sensing / Results

The deflection of the PZT actuators depends on
both the applied electric field and the reaction force on
the actuator from the fourbar [16],[17]. This fact can
be used to fashion a state estimator which measures
the torques acting on the spars (71, 72) as well as the
wing angles (f; and ). The state estimator uses the
applied electric field applied to the actuators as the
input and the moments at the base of the actuator as
outputs. These moments are measured using 1 DOF
semiconductor straingages [2],[15].

Figure 7: Strain gage sensing.

The signal generated by the strain gages, Vp and
the tip displacement of the actuator, J is given by:

4]
Vo

Cl‘/z’n + CQFT

CyVin + C4F, (22)

where the parameters C7,Cy, C3 and Cy4 are 2 X 2 ma-
trices which contain the material and physical proper-
ties of the actuator and strain sensor. We can readily
measure the frequency response of the strain gage dy-
namics (Vo/Vin(s)) using a dynamic signal analyzer
(DSA), HP3562A. We are primarily interested in re-
lating the thorax dynamics G(s) to the above measure-
ment. It can be shown that the measurement dynam-
ics and the structural dynamics are related as (details
in [13]):

W
Vin

(5) = C3+ C4(G(S) — macts2) X
(Ir — Ca(G(5) — maees®)) " C1 (23)

In practice, a state space approach is used to relate
the measurement and thorax dynamics. This avoids
numerically unsound calculations such as inversion of
transfer function matrices. Figs. 8(a) and 8(b) show
the comparison of the actual and predicted strain gage
signals. Fig. 8(a) corresponds to the case when the
sensing actuator is the same as the drive actuator.
Fig. 8(b) represents the cross-coupling, i.e when we
sense the motion of the non-driven actuator. Both
these measurements were taken for a = ¥ = 0° and
show the double peak characteristic of the coupling
between the two sides of the structure.

6.2 Electrical Sensing

Piezo-electric actuators link their mechanical and
electrical domains in a bi-directional fashion[6]. This
property enables the use of the piezo-electric actuators
as sensors. Fig. 9 shows a representation of the actua-
tor as a two-port element, where Cy and Ry represent
the electrical capacitance and resistance (losses) of the
actuator (and can be measured before-hand) and C,,
represents the mechanical compliance of the actuator
(Cm = 1/kqet). Tp represents the transmission ratio
of the actuator from the electrical to the mechanical
domain.

The total admittance of the actuator as seen from
the electrical domain can be calculated as

Y = Yo(w)+Yi(w)
Yo(w) + T2 Yo (w)
JwCo

= 27 1T, 24
1+ijQCQ+ P (W) ( )

We are primarily interested in extracting the mechan-
ical admittance of the structure Y5, (w). To do this, we
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proceed by measuring Y (w), which can be calculated
as:

Vo
_Vin__

W
1=y

Y((AJ) = jwcs (25)

Vo/Vin, is readily measured using a DSA. Subtracting
the effect of Cy, Ry using eqn. 24 yields the required
mechanical admittance of the structure Y, (w).

Figs. 10(a) and 10(b) show a comparison of the
measured mechanical admittance Y, (w) and with the
frequency response predicted by the model for the
cases where @ = 0° and a = 25°. A single scaling
factor was used to match the maximum amplitudes
of the measurement and the simulation. This scaling
takes into account the transmission ratios such as T,
the electromechanical transmission ratio of the PZT
and Ny, the amplification ratio of the fourbar. We see
a validation of an important effect of the system non-
linearity, where a change in the set-point changes the
frequency response of the system radically. Fig. 10(a)
shows a double resonance while Fig. 10(b) shows a sin-

Piezo actuator

Te 3
Y "1 % 3
Ro =5
Yo
s w
e °
25
Vin 210 Co —— Sensing
T Capacitor
Figure 9: Using the piezo-electric actuator as a

mechanical admittance sensor.

gle resonance (before 200 Hz) which is characteristic
of high coupling.

7 Conclusions

A full non-linear modeling of dynamics of the tho-
rax, the major mechanical component of the MFT is
presented. A strategy for choosing the various fab-
rication parameters is presented in order to optimize
the expected performance of the system. Two kinds of
sensors which are presently used on the MFI are dis-
cussed. The non-linear aspects of the system are vali-
dated by observing the frequency response of the sys-
tem and its variation with changing operating points.

Inspite of several constraints in the present fabrica-
tion setup which were mentioned earlier, we observed
satisfactory wing trajectories from the thorax. In par-
ticular, we achieved inertial matching so that both ac-
tuators had the same loaded resonant frequencies, en-
abling them to be operated simultaneously with equal
effectiveness.

We are presently investigating other materials for
making flexures such as HS-2 (silicone-rubber), which
has a low elastic modulus and has potential for mak-
ing very low parallel stiffness flexures. Problems such
as clamping, adhesion will have to be overcome for
successful implementation. Future work will also in-
volve system identification on the structure to fine-
tune the values of various model parameters using the
techniques presented in section 6. Control strategies
will be employed to assess the extent of uncoupling
required to generate the required wing trajectories.
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