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Abstract We present a model-free experimental
method to find a control strategy for achieving stable
flight of a dual-actuator biologically inspired flap-
ping wing flying microrobot during hovering. The
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main idea proposed in this work is the sequential
tuning of parameters for an increasingly more com-
plex strategy in order to sequentially accomplish more
complex tasks: upright stable flight, straight vertical
flight, and stable hovering with altitude and position
control. Each term of the resulting multiple-input—
multiple-output (MIMO) controller has a physical
intuitive meaning and the control structure is relatively
simple such that it could potentially be applied to other
kinds of flapping-wing robots.

Keywords Microrobotics - Flapping-wing flight -
Real-time control - Experimental robotics

1 Introduction

Experiments demonstrating the first controlled ver-
tical unconstrained flight of a 83-mg flapping-wing
flying microrobot were presented in [1]. There, the
idea of using separate actuators exclusively for con-
trol was introduced and demonstrated, through static
and flying experiments. The argument for designing,
developing, and integrating separate actuators exclu-
sively for control is biologically inspired, based on
evidence suggesting that natural insects evolved sep-
arate specialized muscles for power and control [2].
There are important practical problems that arise in
the fabrication process developed for materializing
the design in [1]. Specifically, fabrication needs to
be essentially perfect in order to avoid asymmetries
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in the prototypes that would make them very diffi-
cult to stabilize and control, or uncontrollable. Despite
these fabrication challenges, unconstrained flight con-
trol of the prototype in [1] was preliminarily, but
convincingly, demonstrated using the ideas and find-
ings on altitude control and pitch control in [3-5], and
references therein.

A different design approach, first proposed in [6],
was fully developed in the work presented in [7],
which is the basic design of the robotic prototype
considered in this paper. This design consists of dual
completely independent power actuators that drive
each of the wings independently through two separate
transmissions, and departs significantly from the pre-
vious purely biologically inspired robotic models in
[1]. A model-based control strategy for the prototype
in [7] was proposed and tested in the work presented
in [8]. That paper describes a controller structure con-
sisting of three independent modules for controlling
body attitude, lateral position, and altitude. Therein,
it is also explained that the stability of the inde-
pendent attitude closed-loop is ensured by deriving
the control law from a Lyapunov function. However,
stability robustness and performance robustness with
respect to model uncertainty are not analyzed or dis-
cussed, and consequently, not explicitly enforced by
well-defined theoretical or empirical conditions. Fur-
thermore, it is not clear how the control signals from
the different modules interfere with each other and
the actuators are finally excited. Here, we propose a
new control strategy, which is direct, entirely experi-
mental and model-free, where stability, performance,
stability robustness and performance robustness are
enforced empirically by conducting a series of real-
time flying experiments. Also, the proposed multiple-
input—multiple-output (MIMO) controller, once tuned,
is designed to deal with the undesired effects produced
by the cross-coupling between the channels form-
ing the open-loop MIMO plant. The controller design
method and overall control strategy described in this
paper follow from, and take advantage of, the knowl-
edge on flapping-wing systems gathered through the
static and flying experiments discussed in [3-5] and
the associated analyses presented therein.

In this paper, we provide evidence that the con-
trol philosophy first proposed in [1, 3], based on
asymmetrical flapping patterns, is applicable to the
general flapping-wing flight control case. The exper-
imental results presented here are significantly better
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than those presented in [1], mainly because the design
considered in this work (in Figs. 1 and 2) is, from a
practical perspective, more controllable and robust to
fabrication errors. The main new idea explored in this
paper is the feasibility of finding a MIMO controller
through a sequence of three set of tuning experiments,
in which in every step, the complexity of the controller
structure is increased in order to accomplish more
sophisticated control objectives, while the microrobot
is in unconstrained flight. In the first set of experi-
ments, we tune a MIMO scheme that directly filters
the pitch and roll angles of the robot. Simultaneously,
we add to the control scheme a term that filters the
velocities of the robot during flight along the pitch
and roll axes, which makes the resulting controller
robustly stable. In the second set of experiments, we
demonstrate that pitch and roll can be actuated in order
to control the robot’s position on the horizontal plane.
Clearly, the same method can be used to correct for
drift, which allows the robot to perform straight ver-
tical flight. Finally, in the last set of experiments, we
close the altitude control loop in order to make the
robot hover, using the controller scheme first proposed
in [4].

Researchers have identified four basic flight modes
observed in nature: gliding, fast forward flapping

Fig. 1 Photograph of one of the flapping-wing flying micro-
robots used in the work presented in this paper. The prototypes
considered in this work have two completely independent actua-
tors used simultaneously for power and control. The ball-shaped
markers glued to the robot are used by a Vicon motion capture
system in the estimation of position and orientation of the robot.
This robotic prototype was entirely developed and fabricated at
the Harvard Microrobotics Laboratory
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Fig. 2 Illustration of the robotic insect prototype employed in
the flight experiments presented in this paper. The direction

of the inertial frame axes are labeled as {0}2’ 0 IA/,O Z ! and the
direction of the body frame axes are labeled as {0)?,0 $,0 2}
The origin of the body frame coincides with the robot’s cen-

ter of mass. In this illustration, the origin of the body frame is
displaced for the sake of clarity

(FFF) flight, slow forward flapping (SFF) flight, and
hovering. Different species perform variants of these
basic modes. For example, Chlorostilbon aureoven-
tris hummingbirds and most bee species hover using
horizontal stroke planes and symmetrical flapping pat-
terns (normal hovering), so that, the downstroke and
upstroke are essentially identical, generating a posi-
tive average vertical thrust to compensate gravity, over
a stroke cycle [9]. On the other extreme, Pieris bras-
sicae butterflies are capable of hovering by flapping
their wings in a vertical stroke plane. In between both
extremes, bats such as the members of the species
Plecotus auritus hover using an inclined stroke plane
[10]. When the stroke plane is vertical or highly
inclined, positive lift is generated during the down-
stroke and negative, zero or a small positive lift is
generated during the upstroke. In all cases, hovering
is achieved because the average lift force is positive
even though if the instantaneous lift force oscillates
from positive to negative values during a flapping
cycle. For the kind of robot considered in this paper,
from an aerodynamical perspective, the default flight
mode is normal hovering, as defined in [9]. When this
flight mode is used, the stroke plane is horizontal, so
that, thrust is vertically generated in order to directly
compensate the effect of gravity. Therefore, if robust
stability for hovering is achieved, in theory, any point
in space can be reached. This implies that, in essence,
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the general control problem concerning the robot has
been solved.

The rest of the paper is organized as follows.
Section 2 describes the flapping-wing microrobot used
in the experiments and the main experimental setup.
Section 3 describes the proposed model-free con-
trol strategy. Experimental results are presented in
Section 4. Finally, some concluding remarks are given
in Section 5.

Notation

— R, Rt and Rt denote the sets of reals, non-
negative reals and strictly positive reals, respec-
tively.

— 7,77 and Z™ denote the sets of integers, non-
negative integers and strictly positive integers,
respectively.

— The variable ¢ is used to index discrete time, i.e.,
t = {kTs}2, with k € ZF and Ty € R Ty is
referred to as the sample-and-hold time.

— The variable 7 is used to index continuous time.
Thus, for a generic continuous-time variable x (),
x(t) is the sampled version of x(t), and vice
versa.

— z7! denotes the delay operator, i.e., for a signal
x, 27 'x(k) = x(k — 1) and conversely zx (k) =
x(k 4 1). For convenience, z is also the complex
variable associated to the z-transform.

— s~ ! denotes the integrator operator and conversely
s denotes the differential operator. For conve-
nience, s is also the complex variable associated
to the s-transform.

—  Avectorv € R3 is written with respect to the iner-

tial orthogonal frame, {}2 , Y , VA }, as v, and with
respect to the body orthogonal frame, {, 3, 2}, as

by. The unitary vector with the same direction as
v is written as 0.

2 Description of the Microrobot and Main
Experimental Setup

2.1 Force and Torque Generation

A photograph of one of the robots used in this work
is shown in Fig. 1. An illustration of the same proto-

type, with the most relevant variables and components
labeled, is shown in Fig. 2. This robotic design, first
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presented in [7], was entirely developed and fabricated
at the Harvard Microrobotics Laboratory based on
design principles and models that previously demon-
strated the ability to liftoff [11] and fly under control
in one degree of freedom [3, 4]. The default flight
mode of the robot considered here (in Figs. 1 and 2)
is the normal hovering mode, illustrated in Fig. 3,
defined in [9] and extensively described in the litera-
ture [10, 12—14].

Natural flapping-wing flyers are very diverse in
terms of size, shape and preferred flying strategies.
Individual members of a given species might display
a gamut of gaits, well adapted to different conditions,
and therefore, it might be tempting to erroneously
conclude that natural flying insects evolved to func-
tion in an optimal way, according to some figure of
merit in order to increase their flying performance
in terms of efficiency, maneuverability or other rel-
evant system characteristic. In general, however, the
evolved designs of flying insects are a compromise
between several biological functions. For example,
some elements in the complex flying behavior of
honeybees might reflect an evolutionary adaptation
to their complex social structure and not necessarily
reflect advantages from an aerodynamics perspective
[10]. Despite these biological complexities and sub-
tleties, there exists evidence that suggests that there
are strong reasons to use flapping-wing flight, normal
hovering in particular, at small scale and interme-
diate Reynolds numbers (102 < R, < 104) [15].
The most common reason is great maneuverability
and agility, the most compelling is the integration
of lift and thrust together with stability and con-
trol mechanisms. Thus, all forces on the surrounding

L

Fig. 3 Normal hovering is one of the flight modes observed in
nature [9]. This flight mode is characterized because thrust is
generated vertically in order to directly compensate gravity by
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fluid are derived from the motions of the same actu-
ators, which has great implications in managing the
final total vehicle weight. Furthermore, it has been
argued that for low Reynolds numbers, flapping-wing
flight and steady flight (fixed-wing flight) have simi-
lar aerodynamic power requirements [15], or even,
for appropriate flight modes, flapping-wing flight
can save aerodynamic power compared to steady
flight [16].

The robot shown in Figs. 1 and 2 is composed
of two independent identical piezoelectric bending
bimorph cantilever actuators of the same kind in [11]
and [17], which are used to provide mechanical power
and for control simultaneously, two flexure-based
transmissions (one for each side of the robot), a pair of
airfoils, and an airframe, which serves as mechanical
ground. Each transmission maps the approximately
linear motions of its corresponding actuator into the
flapping motion of the corresponding wing, labeled as
¢r(7) and ¢ (7) in Fig. 2 for the right and left wing,
respectively. The transmissions consist of links and
joints with geometries designed to maximize the prod-
uct of stroke amplitude and first resonant frequency,
given known actuator and airfoil properties [7].

The use of dual power actuators, as shown in Figs. 1
and 2, allows for multiple flapping combinations and
strategies that are the subject of current and further
research. In principle, it is not obvious what kinds of
periodic flapping patterns are best in terms of energy
efficiency, control effectiveness, and maneuverability.
However, from what is observed in nature [2], it seems
reasonable to use sinusoidal flapping patterns, though
other options, such as split-cycle flapping, have been
proposed in the literature [6]. Here, neglecting the

flapping with a horizontal stroke plane, as depicted in the illus-

tration. The default flight mode of the robot in Figs. 1 and 2 is
normal hovering
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nonlinearities observed in this kind of flapping system
[18], the flapping patterns by design are chosen to be

Pr(T) = @ar(T) sin 2 frT) + @B R(7), ey

oL (7) = @ar(t)sin R fL7) + @B (T), 2
for the right side and left side of the robot in Fig. 2,
respectively. Notice that if

YAR(T) = par(r), with fr= fL 3
and
¢Br(t) = ¢p(r) =0, 4)

we obtain the symmetric flapping in Fig. 4a. For flap-
ping systems actuated by piezoelectric actuators, the
discrete-time identified mappings from the actuator
excitation to the sampled flapping angle, are approxi-
mately linear time-invariant (LTI) [18], and therefore,
Egs. 1 and 2 are approximately achieved by excit-
ing the right actuator and the left actuator respectively
with

VR(1) = agr(?) sin 27 frr) + Br(1), (5)

v (1) = ar(t) sin Qr frt) + (1), (0)
where —1 < vr(f) < 1l and —1 < v () < 1.
The excitation signals defined by Eqs. 5 and 6 are
mapped to voltages with the same form over the range
[0, 300] V, used to power the piezoelectric actuators

Mean Stroke Shift
(Positive Pitch)

Symmetric Flapping

Differential Flapping Amplitude
Roll (Positive Roll)

Yaw Pitch

Fig. 4 (a) Symmetric Flapping: Assuming perfect fabrication,
no body torques are generated and the angles of rotation in
three dimensions about the robot’s body axes, °% (pitch), °%
(roll) and 92 (yaw), stay at 0°. (b) Pitch Asymmetrical Flapping:
This flapping pattern makes the robot produce torques about
the pitch axis. (¢) Roll Asymmetrical Flapping: This flapping
pattern makes the robot produce torques about the roll axis
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of the robot, as previously described in [3-5, 18, 19],
and references therein.

Here, we employ two specific basic flapping modes
that are combined in order to generate the body
torques required for flight control. The first flapping
mode, used to generate pitch torque, is shown in
Fig. 4b, which is produced by exciting the actuators
with

ar(t) =apL(t), fr=fL, and Br(t) = BL() #0.
(7

In the particular case shown in Fig. 4b, Br(f) =
Br(t) > 0, which produces a positive pitch torque by
shifting the mean stroke, so that, pp g () = @ (T) >
0. Similarly, Br(¢#) = BL(t) < 0 produces a negative
pitch torque by shifting the mean stroke angle, so that,
¢pr(t) = ¢p(r) < 0. The second flapping mode,
used to generate roll torque, is shown in Fig. 4¢, which
is produced by exciting the actuators with

ar(t) #ap(), fr= fL, and Br(t) = BL() =0.
(8

In the particular case shown in Fig. 4c, ag () < ar (1),
which creates a positive roll torque by generating a
larger average lift force on the left than the average
lift force generated on the right. Similarly, ar(t) >
ay (t) produces a negative roll torque by generating a
larger average lift force on the right than the average
lift force on the left.

The production of forces by flapping wings is a
very complex phenomenon to analyze in detail. How-
ever, there are some well established fundamental
facts that allow us to understand how forces and body
torques are generated and can be used to attain uncon-
strained controlled flight. An illustration of the robot’s
right wing depicting the generation of lift and drag
forces during a flapping cycle is shown in Fig. 5. Here,
a wing hinge connects the transmission to the wing,
so that, when the wing is flapped according to a sinu-
soidal angle g (7), aerodynamic and inertial forces
produce a passive rotation g (7). The generation of
Or(7) implies that the wing faces the air with an angle
of attack necessary for the creation of time-varying lift
and drag forces, the vectors y () and y p (7). As
is customary in the field of aerodynamics, the forces
YL, and yp, are conceptual tools used to model a
complex phenomenon in which the wing flapping pro-
duces a time-varying distribution of forces over the
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surfaces of the wing. In this case, the wing in Fig. 5
can be thought of as completely 2-D, which implies
that the generation of forces can be treated as a vec-
tor field acting on a surface in space (the wing), which
include aerodynamic and inertial contributions.

In principle, using basic vector calculus, it is possi-
ble to compute the time-varying total force exerted on
the wing and the corresponding center of force exactly,
from the force distribution. However, it is experimen-
tally very challenging to design a sensor or devise an
indirect method to measure the distribution of forces
over the wing. A simplified approach is to measure
the total forces along predetermined directions, as dis-
cussed in [4, 19, 20], and make some assumptions
about the geometric location of the center of force. For
a flapping system of the kind considered here, there
exist accurate records of the forces generated along
the z-axis (lift forces) [4, 20] and preliminary mea-
surements of the drag forces along the ¢g direction,
as defined in Fig. 5 [21]. Also, from a simple anal-
ysis of the centrifugal forces acting on the wing, it
is possible to determine that the forces along the pg
are negligible compared to the lift and drag forces
acting on the wing. Thus, from the data presented in
[4, 20] and [21], for the unbiased flapping pr(r) =
@A sin (2 fRrT), it is reasonable to model the sam-
pled lift force as y; (1) = yL r(1)Z, where yp p(f) is a

Trajectory of
_, Center of Force

Fig. 5 Idealized illustration depicting the generation of lift and
drag forces by a wing (the right wing in this case) during a single
flapping cycle. A wing hinge connects the transmission to the
wing, so that, when the wing is flapped according to a sinusoidal
angle ¢g(t), aerodynamic and inertial forces produce a passive
rotation Og (7). The generation of Og(t) implies that the wing
faces the air with an angle of attack necessary for creating time-
varying lift and drag forces, the vectors y, . (7) and y p (7). A
simplified and idealized version of the center of force trajectory
is depicted in red
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periodic signal with frequency 2 fr Hz with two posi-
tive maxima per cycle at 27 fgt = wgt = nw,n € Z*
and two negative minima per cycle at 2w frt = wgt =
(n + %) m,n e Zt. In steady state, for the case dis-

cussed here, the DC component of y1,(?), YLgg, 18
positive and can be estimated as

Np—1
VLo N Ay = > yLr(t—Ti) >0, 9)
i=0
where t = kT, withk € Z, T, € R,and N; € Z*T.
Similarly, the drag force can be modeled as
Ypp(t) = Ypr(1)Pr, wWhere ypg(t) is a periodic
signal with frequency fr Hz with one positive max-
imum per cycle at 27 fgt = wrt = (2n+1)m,
n € Z1. Here, the DC component of yp (%), ¥Drg» 18
theoretically 0 and can be estimated as

Np—1
YDRO N Appp () = > yor(t=Tii) =0, (10)
i=0
where t = kT, withk € Z, T, € R,and N; € Z*T.
Two fundamental signals in the analysis of
autonomous flight and in the development of a suit-
able control strategy are the average lift force y g in
Eq. 9 and the analogous average lift force y ; (, corre-
sponding to the right wing and left wing, respectively.
Similarly, other fundamental signals are the average
pitch torque 7p( and average roll torque 7z, to be dis-
cussed later in this paper, associated with the sampled
instantaneous pitch torque tp (#) and sampled instanta-
neous roll torque tg(t), respectively. The reason why
we care about these average signals is that the sys-
tem dynamics filter out the high frequencies of the
instantaneous signals acting on the system. To see this,
consider the constrained one-dimensional case in [4],
where the equation of motion is simply given by

yL(T) —mg — cp(t) = mp;(7), (1)

where yr(t) = yLgr(r) + yr(T), m is the robot’s
mass, g is the standard gravity acceleration constant,
c is a damping coefficient, and p,(t) is the measured
robot’s altitude. Thus, defining x(t) = yr(r) — mg,
it follows that the mapping from x(t) to p,(t) is the
low-pass filter

L(s) = (12)

cs +ms?’
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Thus, for the parameters of the system con-
sidered here, as can be easily demonstrated
through simulations, the digital inputs x(¢#) and
A(t) = Nirl » flvzox (t — n) produce the same
outputs when the discrete-time version of Eq. 12 is
excited with them. This also means that when Eq. 12
is excited with the continuous-time versions of x(¢)
and A, (?), x(tr) and A, (1), the outputs are essentially
the same.

By definition, in steady state (constant amplitude
and constant frequency of the flapping angle), yi g
is constant. However, if the DC component of yr p(¢)
is changed at a rate significantly slower than the rate
of change of yy g(?) itself, we can think of y; g as
a function that stays approximately constant during a
stroke cycle, but that might change from one cycle to
another. Thus, it is possible to assume that for a given
stroke cycle, the DC component yy g, and the mean
total force, @p, generated by a single flapping wing
(the right wing in this case) throughout a stroke, take
the same value. This hypothesis agrees with the data
obtained through the static flapping-wing experiments
published in [3, 4]. In biological literature on flapping-
wing flight [14, 22, 23], @R is often estimated as

b = /O T pCagvE(E)cr(E)dE, (13)

which is a standard quasi-steady blade-element formu-
lation of flight force (see [20] and references therein),
where p is the density of the air, C¢, is the mean
force coefficient of the wing throughout the stroke,
v2(&) is the mean square relative velocity of each wing
section, cg (&) is the chord length of the wing at a dis-
tance £ from the base, and E is the total wing length.
In the case of a sinusoidal stroke of frequency fr Hz,
Yr(T) = @agsin(2rfrt), with a horizontal stroke
plane, the mean square relative velocity of each wing
section can be roughly estimated as

1 [Tk
V2(E) = 4m® frE%0%, TR/o cos’> (27 frT)dT

= 2m2E%0, [ (14)

with T = fp ! This implies that, regardless of the
size and shape of the wing, the estimated mean total
flight force directly depends on f 1% and 90/241;’ which
indicates that in order for flying insects to accelerate
against gravity or hover at a desired altitude, they can
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modulate the average lift force by changing the stroke
amplitude, @4, or by changing the stroke frequency,
fr. Clearly, the same analysis is valid for the left
wing.

At this point, we have all the basic information for
proposing an actuation strategy that would allow us
to directly modify the pitch and roll torques, and the
lift force acting on the robot. First, let us consider
the lift force and assume that both wings are flapped
at the same frequency, i.e., fg = fr, then from
Egs. 13 and 14 it immediately follows that the magni-
tude of the total average lift force acting on the robot,
YLo = YLLo + YLRg> can be modulated by simulta-
neously varying the sampled amplitudes ¢4, (#) and
@A, (t), which are proportional to o« (f) and ag(?),
because here the mapping from [vg(?) vL(t)]T to
[or(®) @1 (t)]T is approximately LTI. Now, consider-
ing Eqgs. 13 and 14, it immediately follows that the
magnitude of the sampled total average roll torque
acting on the robot, tr(, associated with the instanta-
neous magnitude 7z (¢), can be modulated by flapping
the robot’s right and left wings with different ampli-
tudes, i.e., pr(t) # ¢r(t), which are proportional
to ar (¢) and ag(?), because as explained before, the
mapping from [vg(t) v()]” to [pr() @L()]" is
approximately LTI. Notice that from Eq. 14, it follows
that it is also possible to modulate forces by varying
the flapping frequency. This notion was experimen-
tally demonstrated correct in the work published in
[19].

Finally in this subsection, we discuss the actu-
ation method used to generate and modulate pitch
torques. As discussed in [3], a biased flapping with
respect to the X axis, i.e., pp, (1) = ¢p, () > 0,
produces a sampled total average pitch torque 7py,
associated with the instantaneous magnitude ¢p(¢),
about the pitch axis that allows us to control the
pitch angle. The reason for the generation of this
effect is that the trajectory of the center of force, in
red in Fig. 5, is rotated about the Z axis, so that,
the center of motion of the center of force, marked
with a symbol ® in Fig. 4, is shifted off the X axis.
Once again, since the mapping from [vg(¢) v, (t)]T to
[or(®) @1 (t)]T is approximately LTI, it follows that
the sampled biases ¢p,(f) and @p, (t) are propor-
tional to Br(¢) and B (¢), as defined by Egs. 5 and 6,
respectively.
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Vicon Motion Tracking

Control DSP

D/A Converter

High Voltage Amplifier

Fine Copper Wires

Motion Tracking Volume (Actuation Signal)

Fig. 6 Schematic of the Vicon motion capture system used as a
sensor. In this case, six high-speed cameras capture the position
of four reflective markers (small white balls) at 500 frames per
second (FPS). The positions of the four reflective markers are
used to determine the center of the frame of coordinates fixed to
the robot’s body, Op,,0 py,o p:}, and the attitude of the robot
defined by the Euler angles {61, 65, 63}, which correspond to
three consecutive rotations about the % (pitch), y (roll) and Z
(yaw) axes fixed to the robot’s body. The center of the body
frame coincides with the body center of mass

2.2 Sensing

The feedback control strategy proposed in this paper
is implemented using the robot’s position and orienta-
tion, measured using the Vicon motion capture system
described in [3] and illustrated in Fig. 6. The ori-
entation of the robot with respect to a fixed inertial
frame is computed and then represented by the Euler
angles {01, 6>, 63}, which correspond to three consec-
utive rotations about the X (pitch), y (roll) and z (yaw)
axes fixed to the robot’s body. Thus, using the standard
notation Sy = sin6; and Cr = cosb, fork =1, 2, 3,
it follows that

’p = Rosp, (15)
where “p is the vector p written with respect to the
inertial frame {)A( , Y , VA }, b p is the same vector p writ-
ten with respect to the frame {)?, v, 2}, fixed to the

robot’s body, and

(616} - 85C $
S3C1 + 85185C3 CiCz— 851585 — 51Cy
S183 — $2C1C3 S1C3+ $285C; Ci1Cy

Roep =

(16)

From this point onwards, the {i, j}-entry of Ry will
be denoted by R(()ZQ »- Notice that from definition (16)
. -1 _ pT

it follows that R, ", = Ry_,.

<«
The feedback controller described in Section 3,
depicted in Fig. 8, in the most general case, requires

the computation of the instantaneous pitch, roll, and
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yaw angles. The algorithm for computing the pitch
angle is as follows.

Algorithm 1

(i) Find the plane that contains the pitch axis and
is perpendicular to the fixed inertial horizontal
plane.

(i) Find the plane that contains the pitch axis and
the yaw axis.

(iii) Find the dihedral angle between the planes in
(ii) and (iii).

To translate Algorithm 1 into a formula, first note
that the axes of the frame fixed to the robot’s body
expressed in the inertial frame are simply

b~

A7)

where 28 = [100]", 25 = [010]" and ¥2 =
[ 001 ]T. Recalling that the axes of the inertial frame

written with respect to the inertial frame are 0x =
[100],°7 = [010]" and°Z = [00 1],
it follows that a vector perpendicular to the plane
defined in (i), written with respect to the inertial frame,
can be computed as “n; = %% x 9Z. Similarly, it fol-
lows that a vector perpendicular to the plane defined
in (ii), written with respect to the inertial frame, is
Onz = 0% x 02 Then, it follows that the dihedral angle
between the two planes defined in items (i) and (ii) of
Algorithm 1, the pitch angle, can be computed as

0, .0
. (32) ng - 'm
OPitch = [51gn (R )] [arccos ( ):| ,
b 1°my [1%n2]]
(18)
where —m < Opjren < 7.
A similar method to the one used to compute 0p;sch

can be employed to find the roll angle 6g,;;. Thus,
after some algebraic work it follows that

Oroll = — [sign (R((il)h)] |:arccos< (;)"1 -(;"2 >:| ,
1Pn 1 1P 0
(19)

where — < Ogon < 7, with 0171 = 0% x 07 and
0 05, 02
="y x"z
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Finally, using the same logic, the yaw angle Oy,
can be computed as

Oyaw = [sign (R(()Zi)b)] |:arccos < (?51 -(())52 )j| ,
IPs1l”s2ll
(20)

where —7 < Oyq < 7,0%, = 07 x 9% and Og, =0
Y.

2.3 Filtering

As it is the case of most sensing systems, the position
and orientation information gathered using the Vicon
motion capture system is degraded by noise. In this
case, a particular kind of noise appears as spikes added
to the measured {°p,.% p,.% p., 01, 65, 63}. It seems
that spikes occur at the boundary of the tracking vol-
ume, where only two of the eight cameras can see the
robot, and in general, when one or more markers are
not seen by any of the cameras. If spikes appear spo-
radically, an extrapolation filter can be used to filter
them out, when detected. For a generic variable v (¢),
we propose the estimation scheme

Y- =at—)+bt—¢)+¢, 1)

where ¢ is a positive integer. In order to estimate

{d, 5, E], without loss of generality, we can assume

that #+ = 0. Once {d, 5, 5} are computed, we can
estimate
V() =a+b+é. (22)

In this case, we consider { = kN, where 0 < N € Z
and k = {0,1,2,3,---,K}, where 0 < K € Z.
For example, for K = 5, we can formulate the
least-squares (LS) [24] problem

a
min | —A| b , (23)
{a,b,a} &,
where
[ (—=5N) ] T25N? —5N 17]
Y (—4N) 16N2 —4N 1
| ¥(=3N) | 9N%? -3N 1
V=lyean | W AT N v
V(—N) N2 —N 1
v(0) | L 0 0 1]
(24)
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Thus, the searched parameters can be estimated by
simply finding the optimal solution to Eq. 23, using
the well-known singular value decomposition (SVD)-
based method, which implies that

~*

a
b | = ATy, (25)

Sk

Cc

where AT is the pseudo inverse of A, which implies
that

a* + l;* + & = a6w(0) + asw(_N) +a4w(—2N)
+a3y (=3N) + o (—4N)
+o 1Y (=5N), (26)
?:1‘43-]" where j = {1,-..,6} and Ajj
is the {i, j}-entry of the matrix A". Thus, we can write
the estimator

Yt +1) = a¥ () +asy(t — N) +ag(t —2N)
a3y (t —3N) +ary(t — 4N)
4o (t —5N), 27

which in filter notation simply becomes

with aj =

a6 + a5z 4+ a2 + a3z + oz +ay

V() = SN+ v (@).
(28)

An example demonstrating the effectiveness of the
proposed extrapolation filter, with N = 100, is shown
in Fig. 7. In this figure, the upper plot compares
a raw with a filtered measured Euler angle 6; sig-
nal, and the lower plot shows a closeup of the upper
plot. The Vicon system runs at 500 Hz, but the con-
trol algorithms are run at a sample-and-hold rate of
10 KHz, using an xPC-target system. This speed
difference between the sensing system and the con-
troller implies that each measurement is recorded by
the digital signal processor (DSP) 20 times approx-
imately, and therefore, with N = 100, the filter
is looking back approximately 5 unique Vicon data
points.

3 Control Strategy

The main research issue addressed in this paper is
the development of a model-free tunable strategy
for simultaneously controlling the variables 8p;;cp (1),
Oron(t) and ©p.(r), associated with the prototype
described in Section 2, during unconstrained flight. In
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Comparison of Raw and Filtered Signal 6

011 —— Raw Data
100 — Filtered Data

Euler Angle 60,

. . L . . . .
0 05 1 15 2 25 3 35 4
Time (sec)

Comparison of Raw and Filtered 6, (Closeup)

T
%01l —— Raw Data
100 — Filtered Data

o

336 338 34 342 3.44 346 348 35
Time (sec)

Euler Angle 6,

Fig. 7 Example demonstrating the use of the extrapolation fil-
ter in Eqs. 27 and 28. The upper plot shows a comparison of a
raw with a filtered measured Euler angle 6; signal. The lower
plot shows a closeup of the upper plot

principle, there are many options in order to create a
control strategy for achieving stable and autonomous
flight of the robot. As explained in Section 2, here we
directly modulate the controlled variables by varying
signals vg(¢) and vy (¢) as defined by Egs. 5 and 6.
With this purpose in mind, we define

J Intell Robot Syst (2015) 77:95-111

and then we choose

ap(r) = aro(t) = arLo(?), (32)
a1 (t) = ari(t) = —api (1), (33)
az(t) = ara(t) = ap(0). (34)

Here, a(?) is chosen to be a constant that gener-
ates a baseline lift force. The variable S(¢) is used to
modulate 6pj;cp, the variable «(¢) is used to modu-
late O,y () and the variable a (¢) is used to modulate
the altitude °p, (7). Thus, as described in Fig. 8, the
two relevant vectorial signals in the control problem
considered here are chosen to be

B(@) éf’itch(t)
up®) = a1(®) |, yp@®) =| Orou(®) |, (35)
as(t) 0p. (1)

where the tilde symbols employed in the definition
of yp(t) are used to emphasize the fact that yp(¢)
emerges from an estimation process (using the Vicon
motion capture system described in the previous sub-
section), and consequently, each entry of yp(¢) is the
sum of the true value of a variable (Op;;ch (1), Oron (1)
or ? p;(t)) and sensor noise. Recalling that due to
physical constraints on the manner in which the actua-
tors should be excited, the exciting signals must satisfy

that —1 < vp(r) < land —1 < v (r) < 1, and
t) = t) = 1), 29
)= Pr(t) = Pr(t) (29) therefore, it follows that
ar(®) = aro(®) +ar1(t) + ara (), (30) 0<ar@) +Br() <1, (36)
ap(t) =apot) +api(t) +ap(t), (31) 0<ar(t)+BL) <1, 37)
N (t)
up (T m(r Motion | p,
YN ECIGEN N @) Captore 70 .
System
P (t)
B(t) OBy (t)
up(t) = | a1(t) () = ()PZ(t)
Ozg(t) B q1(t)
Opiten(t) B (1)
yp(t) = 9&%011((3) 03(t)
Control Laws p=(t .
Useg ttoOGer?erate < COI‘H.putatIOn <
up(t) of yp(t)
A
ITQB (t)

Fig. 8 Upper level flight control diagram. The motion cap-
ture system is the sensor used to estimate the robot position
{29x®).° py(®).% p-(t)} and orientation {8;(t), 6>(¢), 3(1)}.
The controlled variables are {Gp,-,(,h ), Oron (1),° pz(t)}. The
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measurement error 7, (¢) is transformed to sensor noise 1z (?).
The control signal is up(r) = [B(t) a1 (2) ar (1T, The refer-

T
ence is ry, (1) = |:r9Pm-h (1) 7oy (1) Top, (t)]
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which implies that 8(¢), a1 (¢) and a(f) must meet
strict saturation limits.

The approach proposed in this work for finding an
experimentally feasible and stable controller is very
intuitive and based on the idea illustrated in Fig. 9. In
this figure, it is easy to see that if we assume a per-
fectly symmetric aerodynamic design and the absence
of fabrication errors, a simple experimentally-tuned
MIMO LTI controller with the form

ug(t) = [C(2)ep] (1) = [C(2) (ry; — yB)] (1)  (38)

and an appropriate reference ry, can be used to com-
pensate for deviations from a desired vertical path. In
this paper, C(z) is a diagonal transfer matrix with the
diagonal labeled as iCpmh (2), Croti(2), Co,, (2) } In
general, the control strategy in Eq. 38 is insuffi-
cient, from a stability perspective, in order to deal
with asymmetries produced by small fabrication errors
and with strong external disturbances, such as wind
gusts, for example. In this paper, we propose a com-
bined robustly stable strategy that includes the oper-
ator defined by Eq. 38 and another component that
processes the information associated with the robot’s
velocities along the %% and °% axes. This information

Fig. 9 Four flying states

(cases), defined with respect Case
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is relevant because it relates to the restoring forces
acting on the robot while flying horizontally. Further-
more, we experimentally demonstrate that the same
proposed control method can be used for hovering and
for implementing basic flying maneuvers. Note that,
as shown in [4], the entry Co, (z) is enough to control
altitude.

The main control idea here, that follows from
Fig. 9, consists of adding four decoupled filters to the
general control scheme. The first two filters take the
velocity and position of the robot along the roll axis,
0%, as inputs and deliver outputs that are added to
the total actuation S(z), which allows us to robustly
stabilize the pitch-angle degree of freedom. The addi-
tional two filters take the velocity and position of
the robot along the pitch axis, 0)2, as inputs and
deliver outputs that are added to the total actua-
tion «(¢), which allows us to robustly stabilize the
roll-angle degree of freedom. It is important to note
that with the appropriate tuning of these filters, the
position of the robot on the Xy plane can be con-
trolled. The robot’s position {°px(1),% py(1).° p. (1)}
is estimated using the previously described Vicon
motion capture system. The velocity of the robot

with respect to the inertial frame {}A( Y. Z } is simply

Negative Pitch: Case 2 Positive Pitch

to the pitch angle 6p;;;, and
the robot velocity along the
roll axis y, Vgon

Wing-Drag Force Adds Z 2 (Yaw)
; «
Corrective Moment /

Positive Velocity

.Along the Roll Axis

z (Yaw)»

Case 4 Negative Pitch

Wing-Drag Force Adds
Destabilizing Moment

Negative Velocity
Along the Roll Axis

Wing-Drag Force Adds
Corrective Moment

Negative Velocity
Along the Roll Axis
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calculated as
e (1)—"px (1—1)

05, (1) o
Ovp = | OBy, (1) | = | POPED T (39)
O0p (1) "ﬁz(z)—;ﬁz(t—l)

where Ty is the sampling rate already defined.

First, we describe the method for finding the filter
that maps the velocity of the robot along the roll axis
to the output that is added to the total actuation S(¢).
The robot’s velocity and position along the roll axis
are given by

“Vron(t) = v, @) - 50| 50, (40)

") = ["p) - 50 | 50, 1)

where, as defined before, %5 (1) = Ros"3(1).

The idea of using 0V, 011 (t) in the computation of
the control signal B(¢) follows from the cartoon in
Fig. 9. This cartoon shows the four relevant cases
(flying states) that should be considered in order to
robustly stabilize the pitch-angle of the robot during
flight. The main notion behind the definition of differ-
ent cases is that restoring forces play a relevant role
when the stability of the flying robot is considered.
To see this, assume without loss of generality that the
pitch angles depicted in Case 1 and Case 4 in Fig. 9
are identical and that the magnitudes of the robot’s
velocities along the roll axis are also identical in both
cases. The main difference between Case 1 and Case 4
is that in Case 1 the interaction of the robot with the
air produces a restoring force that adds a corrective
pitch moment and that in Case 4 the interaction of the
robot with the air produces a force that adds a destabi-
lizing pitch moment. This tells us that a successful and
robust control strategy must add a term to the left side
of Eq. 38 in order to account for the different amount
of actuation required in Case 4 with respect to Case 1.

Now, let us consider Cases 2 and 3. Analogous
to Cases 4 and 1 (with negative pitch angles), in
Cases 2 and 3 the pitch angle, 6p;;cp, is positive and
without loss of generality, it is assumed that the mag-
nitude of the pitch angle in Case 2 is identical to the
pitch angle in Case 3. In Case 2, the robot’s velocity
along the roll axis is positive, which implies that wing
drag adds a destabilizing pitch moment. In Case 3,
the robot’s velocity along the roll axis is negative,
which implies that wing drag adds a corrective pitch
moment. Thus, as argued in the previous paragraph, a
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new term must be added to the left side of Eq. 38 in
order to account for the different amount of actuation
required in Case 3 with respect to Case 2.

Thus, as a design choice, for the pitch angle degree
of freedom, we propose a control structure with the
form

B) = Crisch(2) [Fopi, (1) = Briscn(s) |

—sign ["v, (1) -°5(1) |

|

which allows us to tune a robustly stable controller for
the first entry of the MIMO strategy depicted in Fig. 8.

The analysis done for the pitch case can be repli-
cated for the roll case. Thus, for the roll angle degree
of freedom, we propose a control structure with the
form

“Vpiten(2) HOVRoll(t)
(42)

(1) = Cran @) 1o (1) = Oron ()]

_sign [Ovp(t) : 02(;)]

Vit | "Veian0)|]. 43)
where
Veiren(t) = [V - °20)] 5 ). @4)

As we demonstrate in Section 4, the control strat-
egy in Eqgs. 42 and 43 allows us to stabilize the
pitch angle and roll angle degrees of freedom, so that,
the robot achieves unconstrained flight and autonomy
from a control point of view. Thus, in theory, the
robot can fly indefinitely. The main limitations of this
approach is that there is not a direct way to set a ref-
erence for the position of the robot over the Xy plane
and that the robot displays a tendency to drift, because
the method as proposed in Egs. 42 and 43 allows for
the robot to move laterally in order to reject random
disturbances that might affect the pitch angle or roll
angle degrees of freedom. Another limitation, contin-
gent to the experimental setup employed in this work,
is that when the robot drifts, it can fly outside the
control volume observed by the Vicon motion cap-
ture system, described in Section 2 and illustrated in
Fig. 6. Also, in this setup, the mobility of the robot is
limited by the power wire (recall that the robot is not
autonomous from a power point of view).
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Trajectory During Controlled Flight
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Fig. 10 3-D trajectory of the robot during controlled flight
corresponding to Experiment 1

In order to deal with the limitations described in
the previous paragraph, we modify the control strategy
defined by Eqgs. 42 and 43 as follows

B) = Critah(@) o (1) = Opisca(s) |
—sign [ v, - 5]
Veiuen@ [ "Vron | = oy ] @9
—sign[*p(0) - 5]

Ppitcn(z) UOPRoll (t)’ - r|0pR,,,,(t)|]
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Trajectory During Controlled Flight
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Fig. 12 3-D trajectory of the robot during controlled flight
corresponding to Experiment 2

and
@1(1) = Croin(2) [ o (1) = Oron (1)
—sign| v - %3 (1) ]
Vi@ [ "Vpisen®)] = oy ] 46)
—sign|’p() - °2(0)]
Prot(D) [ "B riten O] = g o]

where,

"B rircn () = "B - ° ()| %(0), (47)

Fig. 11 Frames from high-speed video of Experiment 1 are
overlaid and composited together to show the frontal view
of the robot trajectory during controlled flight. The complete
experiment is shown in the supplementary movie S1.mp4, also
available online through the website pointed by [25]

Fig. 13 Frames from high-speed video of Experiment 2 are
overlaid and composited together to show the frontal view
of the robot trajectory during controlled flight. The complete
experiment is shown in the supplementary movie S1.mp4, also
available online through the website pointed by [25]
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The logic behind this modified structure is that
filters Vpiten(z) and Vgou(z), which are LTI, can
be chosen to have a proportional-integral-derivative
(PID) form, which implies that another interpretation
of the laws in Eqs. 42 and 43 is that the second term
in Eq. 42 and the second term in Eq. 43 minimize
the magnitudes of OVR,,”(t) and Ov p;sen (1), so that in
steady state, velocities equal to 0 are achieved along
the roll and pitch axes, respectively. Thus, the same
filters Vpjten(z) and Vgy(z) can be used to mini-
mize an error and follow a reference, as is done in
the second terms of Eq. 45 and 46. Similarly, using
the third terms of Eqgs. 45 and 46, the position of
the robot on the XY can be controlled. Here, the
structures of filters Ppj;cn(z) and Proy(z) are also
PID.

4 Experimental Results and Discussion

In this section, we present three representative exper-
imental cases that demonstrate the most relevant
aspects of the model-free control strategy proposed in
this paper. In the course of the research discussed here,
the first set of experiments conducted were attempts
of open-loop unconstrained flight, which as expected,
did not achieve hovering because the MIMO open-
loop plant of the system is unstable. A representative
experiment of open-loop flight, labeled as Experi-
ment 0, is shown in the accompanying video S1.mp4,
also available at [25], where it can be seen that the
robot lifts off but topples over almost immediately.
Experiment 1 shows a stable flight employing
the method in Eqgs. 42—43, which uses Vpj;cn(2)
and Vg, (z) to filter the robot’s velocities along the
roll and pitch axes, respectively in order to achieve
robust stability. As previously explained, Vpj;ci(z)
and Vg (z) were developed based on the idea
described in Fig. 9. The results for Experiment 1 are
summarized by a plot of the 3-D trajectory in Fig. 10
and a composite image showing frames of a frontal
view taken with a high speed camera is shown in
Fig. 11. The controller used in Experiment 1 was
repeatedly tested and consistently demonstrated robust
stability in the sense that the robot was capable of
flying oriented upright and not toppling over, even
in the presence of strong disturbances such as wind
gusts generated by the room air conditioning system.
In Figs. 10 and 11, it can be seen that the robot drifts
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Fig. 14 Experiment 3 time-series of the robot’s degrees of
freedom during unconstrained controlled flight. The variables
OpZ (1), Opitcen(t) and Opyy(t) are actively controlled, using
direct references. The variables © px(t) and 0 Dy (t) are indirectly
controlled by defining references for Op;;cp, (t) and O,y (¢). The
variable Oy 4, (¢) is not controlled and it is allowed to drift freely

from its starting position on the horizontal plane, so
that, once the robot leaves the tracking volume, the
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Trajectory During Controlled Flight
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Fig. 15 3-D trajectory of the robot during controlled flight
corresponding to Experiment 3

experiment ends. We believe that this drifting behav-
ior is partially due to the effect of the velocity filters,
Vpiten(z) and Vgoi(z), which during the transient
time help to stabilize orientation, but potentially add
lateral velocity resulting in drift.

In Experiment 2, the robot flies employing the con-
trol laws in Eqgs. 45 and 46, which address the drift
issue observed in Experiment 1 by adding a correc-
tion for position on the horizontal plane, using the
position filters Pp;j;cp(z) and Pgyi(z). The results for
Experiment 2 are summarized by a plot of the 3-D
trajectory in Fig. 12 and a composite image showing
frames of a frontal view taken with a high speed cam-
era shown in Fig. 13. These two figures demonstrate
that the control laws in Eqgs. 45 and 46 make the sys-
tem robustly stable in the sense that the robot flies

3.550.5s

4.0s

455 ii*s’ 255
5.55 b
BE

¥ =~
5‘1;53'05,T " Ta0s
1.0s

Fig. 16 Frames from high-speed video of Experiment 3 are
overlaid and stitched together to show the frontal view of the
robot trajectory during controlled flight. The complete exper-
iment is shown in the supplementary movie S1.mp4, also
available online through the website pointed by [25]
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Fig. 17 Experiment 3 control signals 8 (top plot), a1 (second
plot), and «; (third plot) modulate the pitch torque, roll torque,
and lift generated by the robot, respectively. These control sig-
nals are mapped to actuator input signals for the right actuator
(fourth plot) and left actuator (fifth plot). A closeup of the left
actuator input is shown in the bottom plot. Notice that the inputs
to each actuator are different, because the two actuators are
independent

oriented upright, even in the presence of strong dis-
turbances. Simultaneously, the control laws in Egs. 45
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Fig. 18 Photographic sequence showing a controlled flight of
the robot, corresponding to Experiment 3 described in Figs. 14,
15, 16 and 17. The complete experiment is shown in the

and 46 correct for and eliminate the drifting phe-
nomenon observed in Experiment 1, such that, the
robot flies straight up. The controller used in Experi-
ment 2 was repeatedly tested and consistently proved
capable of achieving stable straight vertical flight for
the robot. In this kind of experiment, once the robot
leaves from the top the tracking volume, the experi-
ment ends.

Finally, Experiment 3 shows hovering and trajec-
tory following. In this case, we use the same strategy
in Eqgs. 45 and 46 for stabilizing the system and con-
trolling position on the Xy plane. But, simultaneously
we control altitude by choosing a finite reference for
this degree of freedom (15 cm in this case). In Fig. 14,
we show all the relevant degrees of freedom of the
robot while flying. As explained in Section 3, *p_(r),
Opitcn(t) and Orey(t) are directly controlled, in this
case with references 15 c¢cm, O rad and O rad. The
variables “p, (r) and © py(t) are indirectly controlled
using the second and third terms of the control laws
in Egs. 45 and 46, in this case with references 0 cm
and O cm. The variable Oy, (¢) is not controlled and
it is allowed to drift freely. Figure 15 shows the 3-D
trajectory of the robot while flying, and a composite
image, formed with the frames of a frontal view taken
with a high speed camera, is shown in Fig. 16. The
relevant control outputs are shown in Fig. 17. Lastly,
a photographic sequence showing the robot’s posi-
tion and orientation through time is shown in Fig. 18.
Figures 14, 15, 16, 17 and 18 present compelling
and comprehensive evidence that the robot remains
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supplementary movie S1.mp4, also available online through the
website pointed by [25]

stable and hovers around the reference position
for six seconds, until the controller is turned off.
The supplementary movie S1.mp4, also available
online at [25], presents all the cases discussed in
this section.

5 Conclusion

We have described the development of a model-
free control strategy and its associated controller
design method for achieving stable autonomous flight
and hovering of an insect-scale flapping-wing fly-
ing microrobot. By experimentally identifying and
tuning key parameters affecting flight stability, a rel-
atively simple MIMO controller resulted, where each
term of the controller has a known physically intu-
itive meaning. To accomplish stable straight vertical
flight, controlling pitch and roll directly was not suf-
ficient, and therefore, additional terms were necessary
to account for the asymmetric nature of the wing drag
force affect on pitch and roll moments. Stable hover
was then achieved by adding direct altitude control
and indirect position control. While the final experi-
ments demonstrated a long and stable flight, a future
model-based controller, based on system identifica-
tion techniques, could offer better flight performance.
One advantage of the proposed control strategy and
its associated model-free controller design method
is that the resulting control structures could poten-
tially be easily applied to a wide gamut of flying
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robots. We believe that the results presented in this
paper represent a significant step towards the develop-
ment of a future robustly-stable model-based control
strategy.
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